1. Scott, J. F.; Paz, A. C. A. Ferroelectric memories. Science 1989, 246, 1400-5.
2. Kang, S.; Jang, W. S.; Morozovska, A. N.; et al. Highly enhanced ferroelectricity in HfO2-based ferroelectric thin film by light ion bombardment. Science 2022, 376, 731-8.
3. Park, M. H.; Lee, Y. H.; Kim, H. J.; et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 2015, 27, 1811-31.
4. Polakowski, P.; Müller, J. Ferroelectricity in undoped hafnium oxide. Appl. Phys. Lett. 2015, 106, 232905.
5. Müller, J.; Böscke, T. S.; Müller, S.; et al. Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories. In Proceedings of the 2013 IEEE International Electron Devices Meeting; 9-11 December 2013, Washington, DC, USA.
6. Böscke, T. S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903.
7. Mikolajick, T.; Slesazeck, S.; Park, M. H.; Schroeder, U. Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS. Bull. 2018, 43, 340-6.
8. Sang, X.; Grimley, E. D.; Schenk, T.; Schroeder, U.; Lebeau, J. M. On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 2015, 106, 162905.
9. Jia, Y.; Yang, Q.; Fang, Y. W.; et al. Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions. Nat. Commun. 2024, 15, 693.
10. Hao, Y.; Chen, X.; Zhang, L.; et al. Record high room temperature resistance switching in ferroelectric-gated Mott transistors unlocked by interfacial charge engineering. Nat. Commun. 2023, 14, 8247.
11. Lee, T. Y.; Lee, K.; Lim, H. H.; et al. Ferroelectric polarization-switching dynamics and wake-up effect in Si-doped HfO2. ACS. Appl. Mater. Interfaces. 2019, 11, 3142-9.
12. Grimley, E. D.; Schenk, T.; Mikolajick, T.; Schroeder, U.; Lebeau, J. M. Atomic structure of domain and interphase boundaries in ferroelectric HfO2. Adv. Mater. Inter. 2018, 5, 1701258.
13. Batra, R.; Huan, T. D.; Jones, J. L.; Rossetti, G.; Ramprasad, R. Factors favoring ferroelectricity in hafnia: a first-principles computational study. J. Phys. Chem. C. 2017, 121, 4139-45.
14. Schroeder, U.; Park, M. H.; Mikolajick, T.; Hwang, C. S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 2022, 7, 653-69.
15. Mittmann, T.; Materano, M.; Chang, S. C.; Karpov, I.; Mikolajick, T.; Schroeder, U. Impact of Oxygen Vacancy Content in Ferroelectric HZO films on the Device Performance. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM); 12-18 December 2020, San Francisco, CA, USA.
16. He, R.; Wu, H.; Liu, S.; Liu, H.; Zhong, Z. Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies. Phys. Rev. B. 2021, 104, L180102.
17. Zhou, Y.; Zhang, Y.; Yang, Q.; et al. The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle. Comput. Mater. Sci. 2019, 167, 143-50.
18. Muñoz Ramo, D.; Shluger, A. L.; Gavartin, J. L.; Bersuker, G. Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2. Phys. Rev. Lett. 2007, 99, 155504.
19. Yan, F.; Wu, Y.; Liu, Y.; et al. Recent progress on defect-engineering in ferroelectric HfO2: the next step forward via multiscale structural optimization. Mater. Horiz. 2024, 11, 626-45.
20. Shao, M.; Liu, H.; He, R.; et al. Programmable ferroelectricity in Hf0.5Zr0.5O2 enabled by oxygen defect engineering. Nano. Lett. 2024, 24, 1231-7.
21. Lee, J.; Yang, K.; Kwon, J. Y.; et al. Role of oxygen vacancies in ferroelectric or resistive switching hafnium oxide. Nano. Converg. 2023, 10, 55.
22. Materano, M.; Mittmann, T.; Lomenzo, P. D.; et al. Influence of oxygen content on the structure and reliability of ferroelectric HfxZr1-xO2 layers. ACS. Appl. Electron. Mater. 2020, 2, 3618-26.
23. Bao, K.; Liao, J.; Yan, F.; et al. Enhanced endurance and imprint properties in Hf0.5Zr0.5O2-δ ferroelectric capacitors by tailoring the oxygen vacancy. ACS. Appl. Electron. Mater. 2023, 5, 4615-23.
24. Zheng, Y.; Zhang, Y.; Xin, T.; et al. Direct atomic-scale visualization of the 90° domain walls and their migrations in Hf0.5Zr0.5O2 ferroelectric thin films. Mater. Today. Nano. 2023, 24, 100406.
25. Bai, F.; Liao, J.; Yang, J.; et al. Mechanical-electrical-chemical coupling study on the stabilization of a hafnia-based ferroelectric phase. NPJ. Comput. Mater. 2023, 9, 1176.
26. Fan, P.; Zhang, Y. K.; Yang, Q.; et al. Origin of the intrinsic ferroelectricity of HfO2 from ab initio molecular dynamics. J. Phys. Chem. C. 2019, 123, 21743-50.
27. Dogan, M.; Gong, N.; Ma, T. P.; Ismail-Beigi, S. Causes of ferroelectricity in HfO2-based thin films: an ab initio perspective. Phys. Chem. Chem. Phys. 2019, 21, 12150-62.
28. Shiraishi, T.; Katayama, K.; Yokouchi, T.; et al. Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films. Appl. Phys. Lett. 2016, 108, 262904.
29. Bouaziz, J.; Romeo, P. R.; Baboux, N.; Vilquin, B. Huge reduction of the wake-up effect in ferroelectric HZO thin films. ACS. Appl. Electron. Mater. 2019, 1, 1740-5.
30. Luo, Q.; Cheng, Y.; Yang, J.; et al. A highly CMOS compatible hafnia-based ferroelectric diode. Nat. Commun. 2020, 11, 1391.
31. Chen, L.; Liang, Z.; Shao, S.; Huang, Q.; Tang, K.; Huang, R. First direct observation of the built-in electric field and oxygen vacancy migration in ferroelectric Hf0.5Zr0.5O2 film during electrical cycling. Nanoscale 2023, 15, 7014-22.
32. Hanson, E. D.; Lajaunie, L.; Hao, S.; et al. Systematic study of oxygen vacancy tunable transport properties of few-layer MoO3-x enabled by vapor-based synthesis. Adv. Funct. Mater. 2017, 27, 1605380.
33. Bhat, J.; Maddani, K.; Karguppikar, A.; Ganesh, S. Electron beam radiation effects on electrical and optical properties of pure and aluminum doped tin oxide films. Nucl. Instrum. Meth. Phys. Res. B. 2007, 258, 369-74.
34. Barzilay, M.; Qiu, T.; Rappe, A. M.; Ivry, Y. Epitaxial TiOx surface in ferroelectric BaTiO3: native structure and dynamic patterning at the atomic scale. Adv. Funct. Mater. 2020, 30, 1902549.
35. Vogel, T.; Kaiser, N.; Petzold, S.; et al. Defect-induced phase transition in hafnium oxide thin films: comparing heavy ion irradiation and oxygen-engineering effects. IEEE. Trans. Nucl. Sci. 2021, 68, 1542-7.
36. Zheng, Y.; Zhong, C.; Zheng, Y.; et al. In-situ atomic visualization of structural transformation in Hf0.5Zr0.5O2 ferroelectric thin film: from nonpolar tetragonal phase to polar orthorhombic phase. In Proceedings of the 2021 Symposium on VLSI Technology; 13-19 June 2021, Kyoto, Japan. Available from: https://ieeexplore.ieee.org/document/9508736 [Last accessed on 14 Mar 2025].
37. Ma, L. Y.; Liu, S. Structural polymorphism kinetics promoted by charged oxygen vacancies in HfO2. Phys. Rev. Lett. 2023, 130, 096801.
38. Liu, S.; Hanrahan, B. M. Effects of growth orientations and epitaxial strains on phase stability of HfO2 thin films. Phys. Rev. Mater. 2019, 3, 054404.
39. Xin, T.; Zheng, Y.; Cheng, Y.; et al. Atomic visualization of the emergence of orthorhombic phase in Hf0.5Zr0.5O2 ferroelectric film with in-situ rapid thermal annealing. In Proceedings of the 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits); 12-17 June 2022, Honolulu, HI, USA.
40. Grimley, E. D.; Schenk, T.; Sang, X.; et al. Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films. Adv. Elect. Mater. 2016, 2, 1600173.
41. Han, R.; Hong, P.; Ning, S.; et al. The effect of stress on HfO2-based ferroelectric thin films: a review of recent advances. J. Appl. Phys. 2023, 133, 240702.
42. Saini, B.; Huang, F.; Choi, Y.; et al. Field-induced ferroelectric phase evolution during polarization “wake-up” in Hf0.5Zr0.5O2 thin film capacitors. Adv. Elect. Mater. 2023, 9, 2300016.
43. Pešić, M.; Fengler, F. P. G.; Larcher, L.; et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv. Funct. Mater. 2016, 26, 4601-12.
44. Yang, J.; Liao, J.; Huang, J.; Yan, F.; Liao, M.; Zhou, Y. Kinetical phase transition paths and phase stability in ferroelectric HfO2. Scripta. Mater. 2024, 242, 115953.
45. Inenaga, K.; Motomura, R.; Ishimaru, M.; Nakamura, R.; Yasuda, H. Liquid-mediated crystallization of amorphous GeSn under electron beam irradiation. J. Appl. Phys. 2020, 127, 205304.
46. Yin, X.; Müller, F.; Huang, Q.; et al. An ultracompact single-ferroelectric field-effect transistor binary and multibit associative search engine. Adv. Intell. Syst. 2023, 5, 2200428.
47. Zheng, Y.; Zheng, Y.; Gao, Z.; et al. Atomic-scale characterization of defects generation during fatigue in ferroelectric Hf0.5Zr0.5O2 films: vacancy generation and lattice dislocation. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM); 11-16 December 2021, San Francisco, CA, USA.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.