1. Liang, X.; Fu, N.; Yao, S.; Li, Z.; Li, Y. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155-74.
2. Wang, W.; Zeng, C.; Tsubaki, N. Recent advancements and perspectives of the CO2 hydrogenation reaction. Green. Carbon. 2023, 1, 133-45.
3. Yang, Q.; Liu, W.; Wang, B.; et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.
4. Liu, W.; Huang, J.; Yang, Q.; et al. Multi-shelled hollow metal-organic frameworks. Angew. Chem. Int. Ed. 2017, 56, 5512-6.
5. Meng, G.; Sun, W.; Mon, A. A.; et al. Strain regulation to optimize the acidic water oxidation performance of atomic-layer IrOx. Adv. Mater. 2019, 31, e1903616.
6. Jin, J.; Fang, Y.; Zhang, T.; Han, A.; Wang, B.; Liu, J. Ultrasmall Ag nanoclusters anchored on NiCo-layered double hydroxide nanoarray for efficient electrooxidation of 5-hydroxymethylfurfural. Sci. China. Mater. 2022, 65, 2704-10.
7. Yang, G.; Wang, D.; Wang, Y.; et al. Modulating the primary and secondary coordination spheres of single Ni(II) sites in metal-organic frameworks for boosting photocatalysis. J. Am. Chem. Soc. 2024, 146, 10798-805.
8. Shi, Z.; Zhang, X.; Lin, X.; et al. Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature 2023, 621, 300-5.
9. Wang, Q.; Wang, H.; Cao, H.; et al. Atomic metal-non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells. Nat. Catal. 2023, 6, 916-26.
10. Li, Y.; Sun, Y.; Qin, Y.; et al. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy. Mater. 2020, 10, 1903120.
11. Li, X.; Mitchell, S.; Fang, Y.; Li, J.; Perez-Ramirez, J.; Lu, J. Advances in heterogeneous single-cluster catalysis. Nat. Rev. Chem. 2023, 7, 754-67.
12. Qiao, B.; Wang, A.; Yang, X.; et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-41.
13. Li, X.; Rong, H.; Zhang, J.; Wang, D.; Li, Y. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano. Res. 2020, 13, 1842-55.
14. Zhou, A.; Wang, D.; Li, Y. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microstructures 2021. DOI: 10.20517/microstructures.2021.08.
15. Liang, C.; Han, X.; Zhang, T.; et al. Cu nanoclusters accelerate the rate-determining step of oxygen reduction on Fe-N-C in all pH range. Adv. Energy. Mater. 2024, 14, 2303935.
16. Han, A.; Wang, B.; Kumar, A.; et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small. Methods. 2019, 3, 1800471.
17. Zhang, N.; Zhang, X.; Tao, L.; et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem. Int. Ed. 2021, 60, 6170-6.
18. Zhang, N.; Yan, H.; Li, L.; et al. Use of rare earth elements in single-atom site catalysis: a critical review - commemorating the 100th anniversary of the birth of Academician Guangxian Xu. J. Rare. Earths. 2021, 39, 233-42.
19. Rocha, G. F. S. R.; da, S. M. A. R.; Rogolino, A.; et al. Carbon nitride based materials: more than just a support for single-atom catalysis. Chem. Soc. Rev. 2023, 52, 4878-932.
20. Ma, Z.; Zhang, T.; Lin, L.; Han, A.; Liu, J. Ni single-atom arrays as self-supported electrocatalysts for CO2RR. AIChE. J. 2023, 69, e18161.
21. Han, X.; Zhang, T.; Wang, X.; et al. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat. Commun. 2022, 13, 2900.
22. Zhang, T.; Han, X.; Yang, H.; et al. Atomically dispersed Nickel(I) on an alloy-encapsulated nitrogen-doped carbon nanotube array for high-performance electrochemical CO2 reduction reaction. Angew. Chem. Int. Ed. 2020, 59, 12055-61.
23. Zhao, Y.; Tian, Z.; Wang, W.; Deng, X.; Tseng, J.; Wang, G. Size-dependent activity of Fe-N-doped mesoporous carbon nanoparticles towards oxygen reduction reaction. Green. Carbon. 2024, 2, 221-30.
24. Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2021, 60, 4448-63.
25. Iemhoff, A.; Vennewald, M.; Palkovits, R. Single-atom catalysts on covalent triazine frameworks: at the crossroad between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2023, 62, e202212015.
26. Zhao, W.; Shen, J.; Xu, X.; et al. Functional catalysts for polysulfide conversion in Li-S batteries: from micro/nanoscale to single atom. Rare. Met. 2022, 41, 1080-100.
27. Zhang, T.; Wang, F.; Yang, C.; et al. Boosting ORR performance by single atomic divacancy Zn-N3C-C8 sites on ultrathin N-doped carbon nanosheets. Chem. Catal. 2022, 2, 836-52.
28. Han, X.; Zhang, T.; Chen, W.; et al. Mn-N4 oxygen reduction electrocatalyst: operando investigation of active sites and high performance in zinc-air battery. Adv. Energy. Mater. 2021, 11, 2002753.
29. Wang, C.; Humayun, M.; Debecker, D. P.; Wu, Y. Electrocatalytic water oxidation with layered double hydroxides confining single atoms. Coord. Chemistry. Rev. 2023, 478, 214973.
30. Zhou, D.; Li, P.; Lin, X.; et al. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790-817.
31. Wang, Y.; Zhang, M.; Liu, Y.; et al. Recent advances on transition-metal-based layered double hydroxides nanosheets for electrocatalytic energy conversion. Adv. Sci. 2023, 10, e2207519.
32. Fan, G.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040-66.
33. Long, X.; Wang, Z.; Xiao, S.; An, Y.; Yang, S. Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today. 2016, 19, 213-26.
34. Lang, R.; Du, X.; Huang, Y.; et al. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986-2043.
35. Shi, Q.; Cheng, M.; Liu, Y.; et al. In-situ generated MOFs with supportive LDH substrates and their derivatives for photo-electrocatalytic energy production and electrochemical devices: insights into synthesis, function, performance and mechanism. Coord. Chem. Rev. 2024, 499, 215500.
36. Hu, T.; Gu, Z.; Williams, G. R.; et al. Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 2022, 51, 6126-76.
37. Jiang, S.; Zhang, M.; Xu, C.; et al. Recent developments in nickel-based layered double hydroxides for photo(-/)electrocatalytic water oxidation. ACS. Nano. 2024, 18, 16413-49.
38. Yan, H.; Lu, J.; Wei, M.; et al. Theoretical study of the hexahydrated metal cations for the understanding of their template effects in the construction of layered double hydroxides. J. Mol. Struct:. THEOCHEM. 2008, 866, 34-45.
39. Liu, G.; Wang, Z.; Shen, T.; Zheng, X.; Zhao, Y.; Song, Y. F. Atomically dispersed Rh-doped NiFe layered double hydroxides: precise location of Rh and promoting hydrazine electrooxidation properties. Nanoscale 2021, 13, 1869-74.
40. Sun, H.; Tung, C. W.; Qiu, Y.; et al. Atomic metal-support interaction enables reconstruction-free dual-site electrocatalyst. J. Am. Chem. Soc. 2022, 144, 1174-86.
41. Shen, T.; Song, Z.; Li, J.; et al. Enabling specific benzene oxidation by tuning the adsorption behavior on Au loaded MgAl layered double hydroxides. Small 2023, 19, e2303420.
42. Yu, H.; Wang, W.; Mao, Q.; et al. Pt single atom captured by oxygen vacancy-rich NiCo layered double hydroxides for coupling hydrogen evolution with selective oxidation of glycerol to formate. Appl. Catal. B:. Environ. 2023, 330, 122617.
43. Wang, B.; Fang, Y.; Han, X.; et al. Atomization-induced high intrinsic activity of a biocompatible MgAl-LDH supported Ru single-atom nanozyme for efficient radicals scavenging. Angew. Chem. Int. Ed. 2023, 62, e202307133.
44. Jin, J.; Han, X.; Fang, Y.; et al. Microenvironment engineering of Ru single-atom catalysts by regulating the cation vacancies in NiFe-layered double hydroxides. Adv. Funct. Mater. 2022, 32, 2109218.
45. Zhang, T.; Yang, X.; Jin, J.; et al. Modulating the electronic metal-support interactions to anti-leaching Pt single atoms for efficient hydrosilylation. Adv. Mater. 2024, 36, e2304144.
46. Zhang, T.; Jin, J.; Chen, J.; et al. Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 6875.
47. Li, P.; Wang, M.; Duan, X.; et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711.
48. Hu, Y.; Shen, T.; Song, Z.; et al. Atomic modulation of single dispersed Ir species on self-supported NiFe layered double hydroxides for efficient electrocatalytic overall water splitting. ACS. Catal. 2023, 13, 11195-203.
49. Chen, W.; Wu, B.; Wang, Y.; et al. Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy. Environ. Sci. 2021, 14, 6428-40.
50. Cao, X.; Qiao, Y.; Jia, M.; He, P.; Zhou, H. Ion-exchange: a promising strategy to design Li-rich and Li-excess layered cathode materials for Li-ion batteries. Adv. Energy. Mater. 2022, 12, 2003972.
51. Chen, S.; Tao, R.; Guo, C.; et al. A new trick for an old technology: ion exchange syntheses of advanced energy storage and conversion nanomaterials. Energy. Storage. Maters. 2021, 41, 758-90.
52. Mu, X.; Gu, X.; Dai, S.; et al. Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting. Energy. Environ. Sci. 2022, 15, 4048-57.
53. Chung, D. Y.; Lopes, P. P.; Farinazzo, B. D. M. P.; et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy. 2020, 5, 222-30.
54. Lin, X.; Wang, Z.; Cao, S.; et al. Bioinspired trimesic acid anchored electrocatalysts with unique static and dynamic compatibility for enhanced water oxidation. Nat. Commun. 2023, 14, 6714.
55. Kuai, C.; Xu, Z.; Xi, C.; et al. Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat. Catal. 2020, 3, 743-53.
56. He, W.; Zhang, R.; Liu, H.; et al. Atomically dispersed silver atoms embedded in NiCo layer double hydroxide boost oxygen evolution reaction. Small 2023, 19, e2301610.
57. Wang, F.; Zou, P.; Zhang, Y.; et al. Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation. Nat. Commun. 2023, 14, 6019.
58. Ling, T.; Jaroniec, M.; Qiao, S. Z. Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions. Adv. Mater. 2020, 32, e2001866.
59. Nandan, R.; Devi, H. R.; Kumar, R.; Singh, A. K.; Srivastava, C.; Nanda, K. K. Inner sphere electron transfer promotion on homogeneously dispersed Fe-Nx centers for energy-efficient oxygen reduction reaction. ACS. Appl. Mater. Interfaces. 2020, 12, 36026-39.
60. Chen, Y.; Lin, J.; Jia, B.; Wang, X.; Jiang, S.; Ma, T. Isolating single and few atoms for enhanced catalysis. Adv. Mater. 2022, 34, e2201796.
61. Li, X.; Liu, L.; Ren, X.; Gao, J.; Huang, Y.; Liu, B. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci. Adv. 2020, 6.
62. Han, B.; Luo, Y.; Lin, Y.; et al. Microenvironment engineering of single-atom catalysts for persulfate-based advanced oxidation processes. Chem. Eng. J. 2022, 447, 137551.
63. Lai, W.; Miao, Z.; Wang, Y.; Wang, J.; Chou, S. Atomic-local environments of single-atom catalysts: synthesis, electronic structure, and activity. Adv. Energy. Mater. 2019, 9, 1900722.
64. Wang, L.; Ma, M.; Zhang, C.; et al. Manipulating the microenvironment of single atoms by switching support crystallinity for industrial hydrogen evolution. Angew. Chem. Int. Ed. 2024, 63, e202317220.
65. Yang, P. P.; Gao, M. R. Enrichment of reactants and intermediates for electrocatalytic CO2 reduction. Chem. Soc. Rev. 2023, 52, 4343-80.
66. Han, S. G.; Ma, D. D.; Zhu, Q. L. Atomically structural regulations of carbon-based single-atom catalysts for electrochemical CO2 reduction. Small. Methods. 2021, 5, e2100102.
67. Li, J.; Zhang, L.; Doyle‐davis, K.; Li, R.; Sun, X. Recent advances and strategies in the stabilization of single-atom catalysts for electrochemical applications. Carbon. Energy. 2020, 2, 488-520.
68. Gloag, L.; Somerville, S. V.; Gooding, J. J.; Tilley, R. D. Co-catalytic metal-support interactions in single-atom electrocatalysts. Nat. Rev. Mater. 2024, 9, 173-89.
69. Qi, K.; Chhowalla, M.; Voiry, D. Single atom is not alone: metal-support interactions in single-atom catalysis. Mater. Today. 2020, 40, 173-92.
70. Zhang, L.; Zhao, X.; Yuan, Z.; Wu, M.; Zhou, H. Oxygen defect-stabilized heterogeneous single atom catalysts: preparation, properties and catalytic application. J. Mater. Chem. A. 2021, 9, 3855-79.
71. Zhang, Y.; Guo, L.; Tao, L.; Lu, Y.; Wang, S. Defect-based single-atom electrocatalysts. Small. Methods. 2019, 3, 1800406.
72. Yang, J.; An, L.; Wang, S.; et al. Defects engineering of layered double hydroxide-based electrocatalyst for water splitting. Chin. J. Catal. 2023, 55, 116-36.
73. Xie, Q.; Cai, Z.; Li, P.; et al. Layered double hydroxides with atomic-scale defects for superior electrocatalysis. Nano. Res. 2018, 11, 4524-34.
74. Zhai, P.; Xia, M.; Wu, Y.; et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.
75. Fan, B.; Wang, W.; Liu, Z.; Guo, J.; Yuan, H.; Tan, Y. Recent progress in single atomic catalysts for electrochemical N2 fixation. Microstructures 2024, 4, 2024025.
76. Liu, X.; Liu, Y.; Yang, W.; Feng, X.; Wang, B. Controlled modification of axial coordination for transition-metal single-atom electrocatalyst. Chem. Eur. J. 2022, 28, e202201471.
77. Zhang, L.; Jin, N.; Yang, Y.; et al. Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: a review. Nano-Micro. Lett. 2023, 15, 228.
78. Duan, X.; Sha, Q.; Li, P.; et al. Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis. Nat. Commun. 2024, 15, 1973.
79. Duan, X.; Li, P.; Zhou, D.; et al. Stabilizing single-atomic ruthenium by ferrous ion doped NiFe-LDH towards highly efficient and sustained water oxidation. Chem. Eng. J. 2022, 446, 136962.
80. Roth-zawadzki, A. M.; Nielsen, A. J.; Tankard, R. E.; Kibsgaard, J. Dual and triple atom electrocatalysts for energy conversion (CO2RR, NRR, ORR, OER, and HER): synthesis, characterization, and activity evaluation. ACS. Catal. 2024, 14, 1121-45.
81. Wang, Y.; Mao, J.; Meng, X.; Yu, L.; Deng, D.; Bao, X. Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem. Rev. 2019, 119, 1806-54.
82. Zhang, W.; Zhao, Y.; Huang, W.; Huang, T.; Wu, B. Coordination environment manipulation of single atom catalysts: regulation strategies, characterization techniques and applications. Coord. Chem. Rev. 2024, 515, 215952.
83. Finzel, J.; Sanroman, G. K. M.; Hoffman, A. S.; Resasco, J.; Christopher, P.; Bare, S. R. Limits of detection for EXAFS characterization of heterogeneous single-atom catalysts. ACS. Catal. 2023, 13, 6462-73.
84. Chang, B.; Zhang, L.; Wu, S.; Sun, Z.; Cheng, Z. Engineering single-atom catalysts toward biomedical applications. Chem. Soc. Rev. 2022, 51, 3688-734.
85. Li, L.; Wang, P.; Shao, Q.; Huang, X. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072-106.
86. Ning, Y.; Sun, Y.; Yang, X.; et al. Defect-rich CoFe-layered double hydroxides as superior peroxidase-like nanozymes for the detection of ascorbic acid. ACS. Appl. Mater. Interfaces. 2023, 15, 26263-72.
87. Zheng, X.; Li, P.; Dou, S.; et al. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy. Environ. Sci. 2021, 14, 2809-58.
88. Yu, Z.; Sun, Q.; Zhang, L.; et al. Research progress of amorphous catalysts in the field of electrocatalysis. Microstructures 2024, 4, 2024022.
89. Mao, J.; Wang, Y.; Zhang, B.; et al. Advances in electrocarboxylation reactions with CO2. Green. Carbon. 2024, 2, 45-56.
90. Zeng, K.; Chao, M.; Tian, M.; et al. Atomically dispersed cerium sites immobilized on vanadium vacancies of monolayer nickel‐vanadium layered double hydroxide: accelerating water splitting kinetics. Adv. Funct. Mater. 2024, 34, 2308533.
91. Wang, B.; Han, X.; Guo, C.; et al. Structure inheritance strategy from MOF to edge-enriched NiFe-LDH array for enhanced oxygen evolution reaction. Appl. Catal. B:. Environ. 2021, 298, 120580.
92. Wang, X.; Zhou, J.; Cui, W.; et al. Electron manipulation and surface reconstruction of bimetallic iron-nickel phosphide nanotubes for enhanced alkaline water electrolysis. Adv. Sci. 2024, 11, e2401207.
93. Zhao, D.; Zhuang, Z.; Cao, X.; et al. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215-64.
94. Hameed, A.; Batool, M.; Liu, Z.; Nadeem, M. A.; Jin, R. Layered double hydroxide-derived nanomaterials for efficient electrocatalytic water splitting: recent progress and future perspective. ACS. Energy. Lett. 2022, 7, 3311-28.
95. Zhang, J.; Liu, J.; Xi, L.; et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876-9.
96. Chen, X.; Wan, J.; Zheng, M.; et al. Engineering single atomic ruthenium on defective nickel vanadium layered double hydroxide for highly efficient hydrogen evolution. Nano. Res. 2023, 16, 4612-9.
97. Biswal, S.; Divya; Mishra, B.; et al. Electronic modulation of iridium single atomic sites on NiCr layered double hydroxide for an improved electrocatalytic oxygen evolution reaction. J. Mater. Chem. A. 2024, 12, 2491-500.
98. Zeng, K.; Tian, M.; Chen, X.; et al. Strong electronic coupling between single Ru atoms and cobalt-vanadium layered double hydroxide harness efficient water splitting. Chem. Eng. J. 2023, 452, 139151.
99. Yu, Z.; Liu, L. Recent Advances in hybrid seawater electrolysis for hydrogen production. Adv. Mater. 2024, 36, e2308647.
100. Du, J.; Xiang, D.; Zhou, K.; et al. Electrochemical hydrogen production coupled with oxygen evolution, organic synthesis, and waste reforming. Nano. Energy. 2022, 104, 107875.
101. Xu, H.; Xin, G.; Hu, W.; et al. Single-atoms Ru/NiFe layered double hydroxide electrocatalyst: efficient for oxidation of selective oxidation of 5-hydroxymethylfurfural and oxygen evolution reaction. Appl. Catal. B:. Environ. 2023, 339, 123157.
102. Sun, H.; Li, L.; Chen, H. C.; et al. Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide. Sci. Bull. 2022, 67, 1763-75.
103. Khalafallah, D.; Farghaly, A. A.; Ouyang, C.; Huang, W.; Hong, Z. Atomically dispersed Pt single sites and nanoengineered structural defects enable a high electrocatalytic activity and durability for hydrogen evolution reaction and overall urea electrolysis. J. Power. Sources. 2023, 558, 232563.
104. Meng, G.; Chang, Z.; Zhu, L.; et al. Adsorption site regulations of [W-O]-doped CoP boosting the hydrazine oxidation-coupled hydrogen evolution at elevated current density. Nano-Micro. Lett. 2023, 15, 212.
105. Wang, Z.; Xu, S. M.; Xu, Y.; et al. Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis. Chem. Sci. 2019, 10, 378-84.
106. Li, L.; Zhang, N. Atomic dispersion of bulk/nano metals to atomic-sites catalysts and their application in thermal catalysis. Nano. Res. 2023, 16, 6380-401.
107. Mori, K.; Taga, T.; Yamashita, H. Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid. ACS. Catal. 2017, 7, 3147-51.
108. Zhou, X.; Yang, Z.; Chen, Y.; et al. Single-atom Ru loaded on layered double hydroxide catalyzes peroxymonosulfate for effective E. coli , 440, 129720.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.