REFERENCES

1. Segeritz C-P, Vallier L. Chapter 9 - cell culture: growing cells as model systems in vitro. In: Jalali M, Saldanha FYL, Jalali M, editors. Basic science methods for clinical researchers. Boston: Academic Press; 2017. pp. 151-72.

2. Berg G, Rybakova D, Fischer D, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 2020;8:103.

3. Lopez-Escalera S, Wellejus A. Evaluation of Caco-2 and human intestinal epithelial cells as in vitro models of colonic and small intestinal integrity. Biochem Biophys Rep 2022;31:101314.

4. van Nuenen MHMC, de Ligt RAF, Doornbos RP, van der Woude JCJ, Kuipers EJ, Venema K. The influence of microbial metabolites on human intestinal epithelial cells and macrophages in vitro. FEMS Immunol Med Microbiol 2005;45:183-9.

5. Jahani-Sherafat S, Azimirad M, Ghasemian-Safaei H, et al. The effect of intestinal microbiota metabolites on HT29 cell line using MTT method in patients with colorectal cancer. Gastroenterol Hepatol Bed Bench 2019;12:S74-9.

6. Engel P, Moran NA. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 2013;37:699-735.

7. Jing TZ, Qi FH, Wang ZY. Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? Microbiome 2020;8:38.

8. Goulson D. The insect apocalypse, and why it matters. Curr Biol 2019;29:R967-71.

9. Janicki J, Dickie G, Scarr S, Chowdhury J. The collapse of insects. 2022. Available from: https://www.reuters.com/graphics/GLOBAL-ENVIRONMENT/INSECT-APOCALYPSE/egpbykdxjvq/. [Last accessed on 26 Feb 2024].

10. Cellosaurus - a knowledge resource on cell lines. Available from: https://www.cellosaurus.org/. [Last accessed on 26 Feb 2024].

11. Stork NE. How many species of insects and other terrestrial arthropods are there on earth? Annu Rev Entomol 2018;63:31-45.

12. Glaser RW, Chapman JW. Studies on the wilt disease, or “flacheria” of the gypsy moth. Science 1912;36:219-24.

13. Smagghe G, Goodman CL, Stanley D. Insect cell culture and applications to research and pest management. In Vitro Cell Dev Biol Anim 2009;45:93-105.

14. Grace TDC. Establishment of four strains of cells from insect tissues grown in vitro. Nature 1962;195:788-9.

15. Drugmand JC. Characterization of insect cell lines is required for appropriate industrial processes: case study of high-five cells for recombinant protein production. 2007. Available from: https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A4586. [Last accessed on 26 Feb 2024]

16. Vaughn JL, Goodwin RH, Tompkins GJ, McCawley P. The establishment of two cell lines from the insect Spodoptera frugiperda (lepidoptera; noctuidae). In Vitro 1977;13:213-7.

17. Rubio NR, Fish KD, Trimmer BA, Kaplan DL. Possibilities for engineered insect tissue as a food source. Front Sustain Food Syst 2019;3:24.

18. Gisder S, Möckel N, Linde A, Genersch E. A cell culture model for Nosema ceranae and Nosema apis allows new insights into the life cycle of these important honey bee-pathogenic microsporidia. Environ Microbiol 2011;13:404-13.

19. Goblirsch MJ, Spivak MS, Kurtti TJ. A cell line resource derived from honey bee (Apis mellifera) embryonic tissues. PLoS One 2013;8:e69831.

20. Create professional science figures in minutes. BioRender. Available from: https://www.biorender.com/. [Last accessed on 26 Feb 2024].

21. Mitsuhashi J. Cell culture of insects. In: Encyclopedia of entomology. Dordrecht: Springer Netherlands; 2005. pp. 480.

22. Michl J, Park KC, Swietach P. Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Commun Biol 2019;2:144.

23. Singh L, Nair L, Kumar D, et al. Hypoxia induced lactate acidosis modulates tumor microenvironment and lipid reprogramming to sustain the cancer cell survival. Front Oncol 2023;13:1034205.

24. Warburg O. The metabolism of carcinoma cells. J Cancer Res 1925;9:148-63.

25. Conceição CC, da Silva JN, Arcanjo A, et al. Aedes fluviatilis cell lines as new tools to study metabolic and immune interactions in mosquito-Wolbachia symbiosis. Sci Rep 2021;11:19202.

26. Watanabe K, Yukuhiro F, Matsuura Y, Fukatsu T, Noda H. Intrasperm vertical symbiont transmission. Proc Natl Acad Sci U S A 2014;111:7433-7.

27. Brandt JW, Chevignon G, Oliver KM, Strand MR. Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proc Biol Sci 2017;284:20171925.

28. O’Neill SL, Pettigrew MM, Sinkins SP, Braig HR, Andreadis TG, Tesh RB. In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect Mol Biol 1997;6:33-9.

29. Rajagopal R. Beneficial interactions between insects and gut bacteria. Indian J Microbiol 2009;49:114-9.

30. Menezes C, Vollet-Neto A, Marsaioli AJ, et al. A Brazilian social bee must cultivate fungus to survive. Curr Biol 2015;25:2851-5.

31. Briones-Roblero CI, Rodríguez-Díaz R, Santiago-Cruz JA, Zúñiga G, Rivera-Orduña FN. Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae). Folia Microbiol 2017;62:1-9.

32. Gilmore TD. The Rel/NF-κB signal transduction pathway: introduction. Oncogene 1999;18:6842-4.

33. Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster - from microbial recognition to whole-organism physiology. Nat Rev Immunol 2014;14:796-810.

34. Marian B. In vitro models for the identification and characterization of tumor-promoting and protective factors for colon carcinogenesis. Food Chem Toxicol 2002;40:1099-104.

35. Langerholc T, Maragkoudakis PA, Wollgast J, Gradisnik L, Cencic A. Novel and established intestinal cell line models - an indispensable tool in food science and nutrition. Trends Food Sci Technol 2011;22:S11-20.

36. Costa J, Ahluwalia A. Advances and current challenges in intestinal in vitro model engineering: a digest. Front Bioeng Biotechnol 2019;7:144.

37. Cencic A, Langerholc T. Functional cell models of the gut and their applications in food microbiology - a review. Int J Food Microbiol 2010;141:S4-14.

38. Koczka K, Peters P, Ernst W, Himmelbauer H, Nika L, Grabherr R. Comparative transcriptome analysis of a Trichoplusia ni cell line reveals distinct host responses to intracellular and secreted protein products expressed by recombinant baculoviruses. J Biotechnol 2018;270:61-9.

39. Fu Y, Yang Y, Zhang H, et al. The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology. Elife 2018;7:e31628.

40. Wei L, Cao L, Miao Y, et al. Transcriptome analysis of Spodoptera frugiperda 9 (Sf9) cells infected with baculovirus, AcMNPV or AcMNPV-BmK IT. Biotechnol Lett 2017;39:1129-39.

41. Vorgia E, Lamprousi M, Denecke S, et al. Functional characterization and transcriptomic profiling of a spheroid-forming midgut cell line from Helicoverpa zea (Lepidoptera: Noctuidae). Insect Biochem Mol Biol 2021;128:103510.

42. Sun H, Chow ECY, Liu S, Du Y, Pang KS. The Caco-2 cell monolayer: usefulness and limitations. Expert Opin Drug Metab Toxicol 2008;4:395-411.

43. Bahrami B, Child MW, Macfarlane S, Macfarlane GT. Adherence and cytokine induction in Caco-2 cells by bacterial populations from a three-stage continuous-culture model of the large intestine. Appl Environ Microbiol 2011;77:2934-42.

44. Maccaferri S, Klinder A, Brigidi P, Cavina P, Costabile A. Potential probiotic Kluyveromyces marxianus B0399 modulates the immune response in Caco-2 cells and peripheral blood mononuclear cells and impacts the human gut microbiota in an in vitro colonic model system. Appl Environ Microbiol 2012;78:956-64.

45. Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012;22:299-306.

46. Dharmani P, Strauss J, Ambrose C, Allen-Vercoe E, Chadee K. Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun 2011;79:2597-607.

47. Kleiveland CR. Co-culture Caco-2/immune cells. In: Verhoeckx K, Cotter P, López-Expósito I, et al., editors. The impact of food bioactives on health. Cham: Springer; 2015.

48. Lozoya-Agullo I, Araújo F, González-Álvarez I, et al. Usefulness of Caco-2/HT29-MTX and Caco-2/HT29-MTX/Raji B coculture models to predict intestinal and colonic permeability compared to Caco-2 monoculture. Mol Pharm 2017;14:1264-70.

49. Singh D, Mathur A, Arora S, Roy S, Mahindroo N. Journey of organ on a chip technology and its role in future healthcare scenario. Appl Surf Sci Adv 2022;9:100246.

50. Caccia S, Casartelli M, Tettamanti G. The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res 2019;377:505-25.

51. Dubreuil RR. Copper cells and stomach acid secretion in the Drosophila midgut. Int J Biochem Cell Biol 2004;36:745-52.

52. Wright WE, Shay JW. The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol 1992;27:383-9.

53. Namba M, Nishitani K, Hyodoh F, Fukushima F, Kimoto T. Neoplastic transformation of human diploid fibroblasts (KMST-6) by treatment with 60Co gamma rays. Int J Cancer 1985;35:275-80.

54. Kitagishi Y, Okumura N, Yoshida H, Nishimura Y, Takahashi J, Matsuda S. Long-term cultivation of in vitro Apis mellifera cells by gene transfer of human c-myc proto-oncogene. In Vitro Cell Dev Biol Anim 2011;47:451-3.

55. Bryan TM, Reddel RR. SV40-induced immortalization of human cells. Crit Rev Oncog 1994;5:331-57.

56. Zhao Z, Fowle H, Valentine H, et al. Immortalization of human primary prostate epithelial cells via CRISPR inactivation of the CDKN2A locus and expression of telomerase. Prostate Cancer Prostatic Dis 2021;24:233-43.

57. Pringle FM, Johnson KN, Goodman CL, McIntosh AH, Ball LA. Providence virus: a new member of the tetraviridae that infects cultured insect cells. Virology 2003;306:359-70.

58. Kharat KR, Sawant MV, Peter S, Hardikar BP. Development and characterization of new cell line BPH22 from midgut epithelial cells of Poekilocerus pictus (Fabricius, 1775). In Vitro Cell Dev Biol Anim 2010;46:824-7.

59. Granados RR. Cell line isolated from larval midgut tissue of Trichoplusia ni. 1994. Available from: https://patents.google.com/patent/US5298418A/en. [Last accessed on 26 Feb 2024].

60. Zhou K, Goodman CL, Ringbauer J Jr, Song Q, Beerntsen B, Stanley D. Establishment of two midgut cell lines from the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). In Vitro Cell Dev Biol Anim 2020;56:10-4.

61. Abstracts. In vitro cell dev biol anim 1993;29A:30-125A.

62. Li J, He F, Yang Y, et al. Establishment and characterization of a novel cell line from midgut tissue of Helicoverpa armigera (Lepidoptera: Noctuidae). In Vitro Cell Dev Biol Anim 2015;51:562-71.

63. Marhoul Z, Pudney M. A mosquito cell line (mos. 55) from Anopheles gambiae larva. Trans R Soc Trop Med Hyg 1972;66:183-4.

64. Aljabr AM, Rizwan-ul-Haq M, Hussain A, Al-Mubarak AI, Al-Ayied HY. Establishing midgut cell culture from Rhynchophorus ferrugineus (Olivier) and toxicity assessment against ten different insecticides. In Vitro Cell Dev Biol Anim 2014;50:296-303.

65. Harvey DM, Levine AJ. p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. Genes Dev 1991;5:2375-85.

66. Martorell Ò, Merlos-Suárez A, Campbell K, et al. Conserved mechanisms of tumorigenesis in the Drosophila adult midgut. PLoS One 2014;9:e88413.

67. Pastor-Pareja JC, Wu M, Xu T. An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis Model Mech 2008;1:144-54.

68. Scharrer B. Insect tumors induced by nerve severance: incidence and mortality. Cancer Res 1953;13:73-6.

69. Villegas SN. One hundred years of Drosophila cancer research: no longer in solitude. Dis Model Mech 2019;12:dmm039032.

70. Proto-oncogenes to oncogenes to cancer. Scitable. Available from: https://www.nature.com/scitable/topicpage/proto-oncogenes-to-oncogenes-to-cancer-883/. [Last accessed on 26 Feb 2024].

71. Frühauf MI, Barcelos LDS, Botton NY, et al. Alternatives for obtaining a continuous cell line from Apis mellifera. Cienc Rural 2021;51:e20201111.

72. Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 1987;84:7413-7.

73. Poole CJ, van Riggelen J. MYC - master regulator of the cancer epigenome and transcriptome. Genes 2017;8:142.

74. Dequéant ML, Fagegaltier D, Hu Y, et al. Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization. Proc Natl Acad Sci U S A 2015;112:12974-9.

75. BIRD FT. Tumours associated with a virus infection in an insect. Nature 1949;163:777-8.

76. Kurze C, Le Conte Y, Dussaubat C, et al. Nosema tolerant honeybees (Apis mellifera) escape parasitic manipulation of apoptosis. PLoS One 2015;10:e0140174.

77. Insect cell lines. Department of Entomology at the University of Kentucky. Available from: https://entomology.ca.uky.edu/aginsectcellsdatabase?combine=&field_cell_order_tid=303&field_cell_species_tid=All&field_cell_stage_tid=All&field_cell_status_tid=All&field_cell_tissue_tid=All. [Last accessed on 26 Feb 2024].

78. Sari-Ak D, Alomari O, Shomali RA, Lim J, Thimiri Govinda Raj DB. Advances in CRISPR-Cas9 for the baculovirus vector system: a systematic review. Viruses 2022;15:54.

79. Nweke EE, Thimiri Govinda Raj DB. Chapter one - development of insect cell line using CRISPR technology. In: Singh V, editor. Progress in molecular biology and translational science. Prog Mol Biol Transl Sci 2021;180:1-20.

80. Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, López-Camarillo C, Hernández-de la Cruz ON. Biological adaptations of tumor cells to radiation therapy. Front Oncol 2021;11:718636.

81. Vaiserman A, Cuttler JM, Socol Y. Low-dose ionizing radiation as a hormetin: experimental observations and therapeutic perspective for age-related disorders. Biogerontology 2021;22:145-64.

82. Iebba V, Totino V, Gagliardi A, et al. Eubiosis and dysbiosis: the two sides of the microbiota. New Microbiol 2016;39:1-12.

83. Daisley BA, Koenig D, Engelbrecht K, et al. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep 2021;37:110087.

84. Marasco R, Fusi M, Callegari M, et al. Destabilization of the bacterial interactome identifies nutrient restriction-induced dysbiosis in insect guts. Microbiol Spectr 2022;10:e0158021.

85. Tolstoy L. Anna Karenina. The Russian Messenger; 1878.

86. Sabree ZL, Huang CY, Arakawa G, et al. Genome shrinkage and loss of nutrient-providing potential in the obligate symbiont of the primitive termite Mastotermes darwiniensis. Appl Environ Microbiol 2012;78:204-10.

87. Su Q, Wang Q, Mu X, et al. Strain-level analysis reveals the vertical microbial transmission during the life cycle of bumblebee. Microbiome 2021;9:216.

88. De Landa GF, Alberoni D, Baffoni L, et al. The gut microbiome of solitary bees is mainly affected by pathogen assemblage and partially by land use. Environ Microbiome 2023;18:38.

89. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14:e1002533.

90. Gianetto-Hill CM, Vancuren SJ, Daisley B, et al. The Robogut: a bioreactor model of the human colon for evaluation of gut microbial community ecology and function. Curr Protoc 2023;3:e737.

91. Chevignon G, Boyd BM, Brandt JW, Oliver KM, Strand MR. Culture-facilitated comparative genomics of the facultative symbiont Hamiltonella defensa. Genome Biol Evol 2018;10:786-802.

92. Zhang Y, Cai T, Yuan M, et al. Microbiome variation correlates with the insecticide susceptibility in different geographic strains of a significant agricultural pest, Nilaparvata lugens. NPJ Biofilms Microbiomes 2023;9:2.

93. Trinder M, McDowell TW, Daisley BA, et al. Probiotic Lactobacillus rhamnosus reduces organophosphate pesticide absorption and toxicity to Drosophila melanogaster. Appl Environ Microbiol 2016;82:6204-13.

94. Leska A, Nowak A, Miśkiewicz K, Rosicka-Kaczmarek J. Binding and detoxification of insecticides by potentially probiotic lactic acid bacteria isolated from honeybee (Apis mellifera L.) environment - an in vitro study. Cells 2022;11:3743.

95. De Weirdt R, Crabbé A, Roos S, et al. Glycerol supplementation enhances L. reuteri’s protective effect against S. typhimurium colonization in a 3-D model of colonic epithelium. PLoS One 2012;7:e37116.

96. Daisley BA, Pitek AP, Mallory E, et al. Disentangling the microbial ecological factors impacting honey bee susceptibility to Paenibacillus larvae infection. Trends Microbiol 2023;31:521-34.

97. Swevers L, Denecke S, Vogelsang K, Geibel S, Vontas J. Can the mammalian organoid technology be applied to the insect gut? Pest Manag Sci 2021;77:55-63.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/