REFERENCES

1. Clavel T, Ecker J. Microbiome and diseases: metabolic disorders. In: Haller D, editor. The gut microbiome in health and disease. Cham: Springer; 2018. pp. 251-77.

2. Koh A, Bäckhed F. From association to causality: the role of the gut microbiota and its functional products on host metabolism. Mol Cell 2020;78:584-96.

3. Kübeck R, Bonet-Ripoll C, Hoffmann C, et al. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol Metab 2016;5:1162-74.

4. Hanssen NMJ, de Vos WM, Nieuwdorp M. Fecal microbiota transplantation in human metabolic diseases: from a murky past to a bright future? Cell Metab 2021;33:1098-110.

5. Rinott E, Youngster I, Yaskolka Meir A, et al. Effects of diet-modulated autologous fecal microbiota transplantation on weight regain. Gastroenterology 2021;160:158-73.e10.

6. Sharpton SR, Schnabl B, Knight R, Loomba R. Current concepts, opportunities, and challenges of gut microbiome-based personalized medicine in nonalcoholic fatty liver disease. Cell Metab 2021;33:21-32.

7. Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol 2022;19:625-37.

8. Woting A, Blaut M. The intestinal microbiota in metabolic disease. Nutrients 2016;8:202.

9. Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J 2013;7:880-4.

10. Hitch TCA, Afrizal A, Riedel T, et al. Recent advances in culture-based gut microbiome research. Int J Med Microbiol 2021;311:151485.

11. Afrizal A, Jennings SAV, Hitch TCA, et al. Enhanced cultured diversity of the mouse gut microbiota enables custom-made synthetic communities. Cell Host Microbe 2022;30:1630-45.e25.

12. Basic M, Bleich A. Gnotobiotics: past, present and future. Lab Anim 2019;53:232-43.

13. Clavel T, Lepage P, Charrier C. The family coriobacteriaceae. In: Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes. Berlin: Springer; 2014. pp. 201-38.

14. Gupta RS, Chen WJ, Adeolu M, Chai Y. Molecular signatures for the class Coriobacteriia and its different clades; proposal for division of the class Coriobacteriia into the emended order Coriobacteriales, containing the emended family Coriobacteriaceae and Atopobiaceae fam. nov., and Eggerthellales ord. nov., containing the family Eggerthellaceae fam. nov. Int J Syst Evol Microbiol 2013;63:3379-97.

15. Qin J, Li R, Raes J, et al. MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65.

16. Bokkenheuser VD, Winter J, Dehazya P, Kelly WG. Isolation and characterization of human fecal bacteria capable of 21-dehydroxylating corticoids. Appl Environ Microbiol 1977;34:571-5.

17. Harris SC, Devendran S, Méndez-García C, et al. Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243T. Gut Microbes 2018;9:523-39.

18. Rekdal V, Bess EN, Bisanz JE, Turnbaugh PJ, Balskus EP. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 2019;364:eaau6323.

19. Maini Rekdal V, Nol Bernadino P, Luescher MU, et al. A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. Elife 2020;9:e50845.

20. Clavel T, Doré J, Blaut M. Bioavailability of lignans in human subjects. Nutr Res Rev 2006;19:187-96.

21. Bess EN, Bisanz JE, Yarza F, et al. Genetic basis for the cooperative bioactivation of plant lignans by Eggerthella lenta and other human gut bacteria. Nat Microbiol 2020;5:56-66.

22. Haiser HJ, Gootenberg DB, Chatman K, Sirasani G, Balskus EP, Turnbaugh PJ. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 2013;341:295-8.

23. Alexander M, Ang QY, Nayak RR, et al. Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe 2022;30:17-30.e9.

24. Koh A, Molinaro A, Ståhlman M, et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 2018;175:947-61.e17.

25. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490:55-60.

26. Forslund K, Hildebrand F, Nielsen T, et al. MetaHIT consortium. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015;528:262-6.

27. Yun Y, Kim HN, Kim SE, et al. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol 2017;17:151.

28. Fu J, Bonder MJ, Cenit MC, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res 2015;117:817-24.

29. Brugiroux S, Beutler M, Pfann C, et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat Microbiol 2016;2:16215.

30. Pjevac P, Hausmann B, Schwarz J, et al. An economical and flexible dual barcoding, two-step PCR approach for highly multiplexed amplicon sequencing. Front Microbiol 2021;12:669776.

31. Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 2013;41:e1.

32. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 2013;10:996-8.

33. Lagkouvardos I, Joseph D, Kapfhammer M, et al. IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep 2016;6:33721.

34. Lagkouvardos I, Fischer S, Kumar N, Clavel T. Rhea: a transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ 2017;5:e2836.

35. Wang Z, Karkossa I, Großkopf H, et al. Comparison of quantitation methods in proteomics to define relevant toxicological information on AhR activation of HepG2 cells by BaP. Toxicology 2021;448:152652.

36. Streidl T, Karkossa I, Segura Muñoz RR, et al. The gut bacterium Extibacter muris produces secondary bile acids and influences liver physiology in gnotobiotic mice. Gut Microbes 2021;13:1-21.

37. Pedersen KJ, Haange SB, Žížalová K, et al. Eggerthella lenta DSM 2243 alleviates bile acid stress response in clostridium ramosum and anaerostipes caccae by transformation of bile acids. Microorganisms 2022;10:2025.

38. Krause JL, Haange SB, Schäpe SS, et al. The glyphosate formulation Roundup® LB plus influences the global metabolome of pig gut microbiota in vitro. Sci Total Environ 2020;745:140932.

39. Rohart F, Gautier B, Singh A, Lê Cao KA. mixOmics: an R package for ’omics feature selection and multiple data integration. PLoS Comput Biol 2017;13:e1005752.

40. Wickham H. ggplot2: elegant graphics for data analysis. Springer: New York; 2016. Available from: https://link.springer.com/book/10.1007/978-3-319-24277-4. [Last accessed on 16 Jan 2024].

41. Spiess AN. qpcR: modelling and analysis of real-time PCR data. 2018. Available from: https://cran.r-project.org/web/packages/qpcR/index.html. [Last accessed on 16 Jan 2024].

42. Wei T, Simko V, Xie Y, et al. R package “corrplot”: visualization of a correlation matrix 2017. Available from: https://github.com/taiyun/corrplot. [Last accessed on 16 Jan 2024].

43. Peterson BG, Carl P, Pulkit, et al. PerformanceAnalytics: econometric tools for performance and risk analysis. 2014. Available from: https://github.com/braverock/PerformanceAnalytics. [Last accessed on 16 Jan 2024].

44. Graffelman J, van Eeuwijk F. Calibration of multivariate scatter plots for exploratory analysis of relations within and between sets of variables in genomic research. Biom J 2005;47:863-79.

45. Sakai R, Winand R, Verbeiren T, Moere AV, Aerts J. dendsort: modular leaf ordering methods for dendrogram representations in R. F1000Res 2014;3:177.

46. Galili T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 2015;31:3718-20.

47. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016;32:2847-9.

48. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015;43:e47.

49. Wickham H. Data analysis. In: ggplot2. Cham: Springer; 2016. pp. 189-201.

50. Wickham H. Reshaping data with the reshape package. J Stat Soft 2007;21:1-20.

51. Dragulescu A, Arendt C. xlsx: read, write, format excel 2007 and excel 97/2000/XP/2003 files. 2020. Available from: https://cran.r-project.org/web/packages/xlsx/index.html. [Last accessed on 16 Jan 2024].

52. Zhang X, Smits AH, van Tilburg GB, Ovaa H, Huber W, Vermeulen M. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat Protoc 2018;13:530-50.

53. Xiao N, Cook J, Jégousse C, Li M. ggsci: scientific journal and Sci-Fi themed color palettes for “ggplot2”. 2023. Available from: https://cran.r-project.org/web/packages/ggsci/index.html. [Last accessed on 16 Jan 2024].

54. Kassambara A. ggpubr: “ggplot2” based publication ready plots. 2023. Available from: https://rpkgs.datanovia.com/ggpubr/. [Last accessed on 16 Jan 2024].

55. Kolde R, Taunometsalu, Lizee A. Pheatmap: pretty heatmaps. 2012. Available from: https://github.com/raivokolde/pheatmap. [Last accessed on 16 Jan 2024].

56. Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize implements and enhances circular visualization in R. Bioinformatics 2014;30:2811-2.

57. Oksanen J, Simpson G, Blanchet FG, et al. vegan: community ecology package. R package version 2.6-4. 2022. Available from: https://cran.r-project.org/web/packages/vegan/index.html. [Last accessed on 16 Jan 2024].

58. Streidl T. Effects of the bacterial conversion of lipids in the gut on mouse metabolism. RWTH Aachen University; 2021.

59. Eberl C, Ring D, Munch PC, et al. Reproducible colonization of germ-free mice with the oligo-mouse-microbiota in different animal facilities. Front Microbiol 2019;10:2999.

60. Frese SA, Mackenzie DA, Peterson DA, et al. Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont. PLoS Genet 2013;9:e1004057.

61. Seedorf H, Griffin NW, Ridaura VK, et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 2014;159:253-66.

62. Kasahara K, Krautkramer KA, Org E, et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 2018;3:1461-71.

63. Kovatcheva-Datchary P, Shoaie S, Lee S, et al. Simplified intestinal microbiota to study microbe-diet-host interactions in a mouse model. Cell Rep 2019;26:3772-83.e6.

64. Martínez I, Wallace G, Zhang C, et al. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol 2009;75:4175-84.

65. Claus SP, Ellero SL, Berger B, et al. Colonization-induced host-gut microbial metabolic interaction. mBio 2011;2:e00271-10.

66. Beloborodova NV, Khodakova AS, Bairamov IT, Olenin AY. Microbial origin of phenylcarboxylic acids in the human body. Biochemistry 2009;74:1350-5.

67. Beloborodova N, Bairamov I, Olenin A, Shubina V, Teplova V, Fedotcheva N. Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils. J Biomed Sci 2012;19:89.

68. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev 2000;80:1107-213.

69. Sperry JF, Wilkins TD. Arginine, a growth-limiting factor for Eubacterium lentum. J Bacteriol 1976;127:780-4.

70. Maria J, Vallance P, Charles IG, Leiper JM. MicroCorrespondence: identification of microbial dimethylarginine dimethylaminohydrolase enzymes. Mol Microbiol 1999;33:1278-9.

71. Böger RH, Bode-Böger SM, Szuba A, et al. Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 1998;98:1842-7.

72. Abbasi F, Asagmi T, Cooke JP, et al. Plasma concentrations of asymmetric dimethylarginine are increased in patients with type 2 diabetes mellitus. Am J Cardiol 2001;88:1201-3.

73. Miyazaki H, Matsuoka H, Cooke JP, et al. Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis. Circulation 1999;99:1141-6.

74. Surdacki A, Nowicki M, Sandmann J, et al. Reduced urinary excretion of nitric oxide metabolites and increased plasma levels of asymmetric dimethylarginine in men with essential hypertension. J Cardiovasc Pharmacol 1999;33:652-8.

75. Zairis MN, Patsourakos NG, Tsiaousis GZ, et al. Plasma asymmetric dimethylarginine and mortality in patients with acute decompensation of chronic heart failure. Heart 2012;98:860-4.

76. Jacobi J, Tsao PS. Asymmetrical dimethylarginine in renal disease: limits of variation or variation limits? A systematic review. Am J Nephrol 2008;28:224-37.

77. Noecker C, Sanchez J, Bisanz JE, et al. Systems biology elucidates the distinctive metabolic niche filled by the human gut microbe Eggerthella lenta. PLoS Biol 2023;21:e3002125.

78. Dong X, Guthrie BGH, Alexander M, et al. Genetic manipulation of the human gut bacterium Eggerthella lenta reveals a widespread family of transcriptional regulators. Nat Commun 2022;13:7624.

79. Sprotte S, Rasmussen TS, Cho GS, et al. Morphological and genetic characterization of Eggerthella lenta bacteriophage PMBT5. Viruses 2022;14:1598.

80. Bisanz JE, Soto-Perez P, Noecker C, et al. A genomic toolkit for the mechanistic dissection of intractable human gut bacteria. Cell Host Microbe 2020;27:1001-13.e9.

81. Perez-Riverol Y, Bai J, Bandla C, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 2022;50:D543-52.

82. Sud M, Fahy E, Cotter D, et al. Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res 2016;44:D463-70.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/