REFERENCES

1. Peng, Y.; Bai, Y.; Liu, C.; Cao, S.; Kong, Q.; Pang, H. Applications of metal-organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage. Coord. Chem. Rev. 2022, 466, 214602.

2. Xiao, X.; Zou, L.; Pang, H.; Xu, Q. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 2020, 49, 301-31.

3. Wang, H. F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414-48.

4. Droguet, L.; Grimaud, A.; Fontaine, O.; Tarascon, J. M. Water-in-salt electrolyte (WiSE) for aqueous batteries: a long way to practicality. Adv. Energy. Mater. 2020, 10, 2002440.

5. Yi, Z.; Chen, G.; Hou, F.; Wang, L.; Liang, J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy. Mater. 2021, 11, 2003065.

6. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: a battery of choices. Science 2011, 334, 928-35.

7. Demir-Cakan, R.; Palacin, M. R.; Croguennec, L. Rechargeable aqueous electrolyte batteries: from univalent to multivalent cation chemistry. J. Mater. Chem. A. 2019, 7, 20519-39.

8. Li, M.; Liu, T.; Bi, X.; et al. Cationic and anionic redox in lithium-ion based batteries. Chem. Soc. Rev. 2020, 49, 1688-705.

9. Ji, X. A paradigm of storage batteries. Energy. Environ. Sci. 2019, 12, 3203-24.

10. Xie, J.; Lu, Y. C. A retrospective on lithium-ion batteries. Nat. Commun. 2020, 11, 2499.

11. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19-29.

12. Wang, Q.; Mao, B.; Stoliarov, S. I.; Sun, J. A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog. Energy. Combust. Sci. 2019, 73, 95-131.

13. Wang, Q.; Jiang, L.; Yu, Y.; Sun, J. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano. Energy. 2019, 55, 93-114.

14. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-7.

15. Liu, X.; Ren, D.; Hsu, H.; et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2018, 2, 2047-64.

16. Gao, S.; Sun, F.; Liu, N.; Yang, H.; Cao, P. F. Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries - A review. Mater. Today. 2020, 40, 140-59.

17. Chao, D.; Zhou, W.; Xie, F.; et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 2020, 6, eaba4098.

18. Peng, Y.; Xu, J.; Xu, J.; et al. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv. Colloid. Interface. Sci. 2022, 307, 102732.

19. Selvakumaran, D.; Pan, A.; Liang, S.; Cao, G. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A. 2019, 7, 18209-36.

20. Zhang, H.; Liu, X.; Li, H.; Hasa, I.; Passerini, S. Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 2021, 60, 598-616.

21. Chen, D.; Lu, M.; Cai, D.; Yang, H.; Han, W. Recent advances in energy storage mechanism of aqueous zinc-ion batteries. J. Energy. Chem. 2021, 54, 712-26.

22. Ji, B.; He, H.; Yao, W.; Tang, Y. Recent Advances and perspectives on calcium-ion storage: key materials and devices. Adv. Mater. 2021, 33, e2005501.

23. Mao, M.; Tong, Y.; Zhang, Q.; et al. Joint cationic and anionic redox chemistry for advanced Mg batteries. Nano. Lett. 2020, 20, 6852-8.

24. Das, S. K.; Mahapatra, S.; Lahan, H. Aluminium-ion batteries: developments and challenges. J. Mater. Chem. A. 2017, 5, 6347-67.

25. Wan, F.; Zhou, X.; Lu, Y.; Niu, Z.; Chen, J. Energy storage chemistry in aqueous zinc metal batteries. ACS. Energy. Lett. 2020, 5, 3569-90.

26. Sun, R.; Xia, P.; Guo, X.; et al. Ternary Zn3V3O8 superstructure and synergistic modification of separator promote high performance and stable zinc ion battery. Chem. Eng. J. 2024, 486, 150377.

27. Li, L.; Zhang, Q.; He, B.; et al. Advanced multifunctional aqueous rechargeable batteries design: from materials and devices to systems. Adv. Mater. 2022, 34, e2104327.

28. Ponrouch, A.; Frontera, C.; Bardé, F.; Palacín, M. R. Towards a calcium-based rechargeable battery. Nat. Mater. 2016, 15, 169-72.

29. Canepa, P.; Sai, G. G.; Hannah, D. C.; et al. Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 2017, 117, 4287-341.

30. Ming, J.; Guo, J.; Xia, C.; Wang, W.; Alshareef, H. N. Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng. R. Rep. 2019, 135, 58-84.

31. Sun, X.; Bonnick, P.; Nazar, L. F. Layered TiS2 positive electrode for Mg batteries. ACS. Energy. Lett. 2016, 1, 297-301.

32. Sun, X.; Blanc, L.; Nolis, G. M.; Bonnick, P.; Cabana, J.; Nazar, L. F. NaV1.25Ti0.75O4: a potential post-spinel cathode material for Mg batteries. Chem. Mater. 2018, 30, 121-8.

33. Elia, G. A.; Marquardt, K.; Hoeppner, K.; et al. An overview and future perspectives of aluminum batteries. Adv. Mater. 2016, 28, 7564-79.

34. Ambroz, F.; Macdonald, T. J.; Nann, T. Trends in aluminium-based intercalation batteries. Adv. Energy. Mater. 2017, 7, 1602093.

35. Yang, R.; Yao, W.; Tang, B.; et al. Development and challenges of electrode materials for rechargeable Mg batteries. Energy. Stor. Mater. 2021, 42, 687-704.

36. Pan, Y.; Liu, Z.; Liu, S.; et al. Quasi-decoupled solid-liquid hybrid electrolyte for highly reversible interfacial reaction in aqueous zinc-manganese battery. Adv. Energy. Mater. 2023, 13, 2203766.

37. Zhao, Y.; Zhou, R.; Song, Z.; et al. Interfacial designing of MnO2 half-wrapped by aromatic polymers for high-performance aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2022, 61, e202212231.

38. Zhang, N.; Cheng, F.; Liu, J.; et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405.

39. Xu, C.; Li, B.; Du, H.; Kang, F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 2012, 51, 933-5.

40. Kim, Y.; Park, Y.; Kim, M.; Lee, J.; Kim, K. J.; Choi, J. W. Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nat. Commun. 2022, 13, 2371.

41. Xia, C.; Guo, J.; Lei, Y.; Liang, H.; Zhao, C.; Alshareef, H. N. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 2017, 30, 1705580.

42. Sun, R.; Dong, S.; Guo, X.; et al. Construction of 2D sandwich-like Na2V6O16·3H2O@MXene heterostructure for advanced aqueous zinc ion batteries. J. Colloid. Interface. Sci. 2024, 655, 226-33.

43. Guo, S.; Qin, L.; Wu, J.; et al. Conversion-type anode chemistry with interfacial compatibility toward Ah-level near-neutral high-voltage zinc ion batteries. Natl. Sci. Rev. 2024, 11, nwae181.

44. Liu, Y.; Lu, X.; Lai, F.; et al. Rechargeable aqueous Zn-based energy storage devices. Joule 2021, 5, 2845-903.

45. Fang, G.; Zhou, J.; Pan, A.; Liang, S. Recent advances in aqueous zinc-ion batteries. ACS. Energy. Lett. 2018, 3, 2480-501.

46. Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245-69.

47. Zhou, T.; Zhu, L.; Xie, L.; et al. Cathode materials for aqueous zinc-ion batteries: a mini review. J. Colloid. Interface. Sci. 2022, 605, 828-50.

48. Liang, G.; Mo, F.; Wang, D.; et al. Commencing mild Ag-Zn batteries with long-term stability and ultra-flat voltage platform. Energy. Storage. Mater. 2020, 25, 86-92.

49. Zhu, X.; Wu, Y.; Lu, Y.; et al. Aluminum-doping-based method for the improvement of the cycle life of cobalt-nickel hydroxides for nickel-zinc batteries. J. Colloid. Interface. Sci. 2021, 587, 693-702.

50. Qiu, D.; Li, B.; Zhao, C.; et al. A review on zinc electrodes in alkaline electrolyte: current challenges and optimization strategies. Energy. Storage. Mater. 2023, 61, 102903.

51. Yamamoto, T.; Shoji, T. Rechargeable Zn|ZnSO4|MnO2-type cells. Inorg. Chim. Acta. 1986, 117, L27-8.

52. Hu, Y.; Liu, Z.; Li, L.; et al. Reconstructing interfacial manganese deposition for durable aqueous zinc-manganese batteries. Natl. Sci. Rev. 2023, 10, nwad220.

53. Wang, X.; Zhang, Z.; Xi, B.; et al. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS. Nano. 2021, 15, 9244-72.

54. Chen, L.; An, Q.; Mai, L. Recent advances and prospects of cathode materials for rechargeable aqueous zinc-ion batteries. Adv. Mater. Inter. 2019, 6, 1900387.

55. Huang, J.; Qiu, X.; Wang, N.; Wang, Y. Aqueous rechargeable zinc batteries: challenges and opportunities. Curr. Opin. Electrochem. 2021, 30, 100801.

56. Zhang, Z.; Li, W.; Shen, Y.; et al. Issues and opportunities of manganese-based materials for enhanced Zn-ion storage performances. J. Energy. Storage. 2022, 45, 103729.

57. Tafur, J. P.; Abad, J.; Román, E.; Fernández, R. A. J. Charge storage mechanism of MnO2 cathodes in Zn/MnO2 batteries using ionic liquid-based gel polymer electrolytes. Electrochem. Commun. 2015, 60, 190-4.

58. Hao, J.; Mou, J.; Zhang, J.; et al. Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta. 2018, 259, 170-8.

59. Wei, C.; Xu, C.; Li, B.; Du, H.; Kang, F. Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. J. Phys. Chem. Solids. 2012, 73, 1487-91.

60. Pang, Q.; Sun, C.; Yu, Y.; et al. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy. Mater. 2018, 8, 1800144.

61. Lee, H. W.; Wang, R. Y.; Pasta, M.; Woo, L. S.; Liu, N.; Cui, Y. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 2014, 5, 5280.

62. Chen, X.; Xie, X.; Ruan, P.; Liang, S.; Wong, W. Y.; Fang, G. Thermodynamics and kinetics of conversion reaction in zinc batteries. ACS. Energy. Lett. 2024, 9, 2037-56.

63. Dou, X.; Xie, X.; Liang, S.; Fang, G. Low-current-density stability of vanadium-based cathodes for aqueous zinc-ion batteries. Sci. Bull. 2024, 69, 833-45.

64. Liu, S.; Zhu, H.; Zhang, B.; et al. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 2020, 32, e2001113.

65. Xu, X.; Xiong, F.; Meng, J.; et al. Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Adv. Funct. Mater. 2020, 30, 1904398.

66. Zuo, S.; Xu, X.; Ji, S.; Wang, Z.; Liu, Z.; Liu, J. Cathodes for aqueous Zn-ion batteries: materials, mechanisms, and kinetics. Chemistry 2021, 27, 830-60.

67. Gao, Y.; Yin, J.; Xu, X.; Cheng, Y. Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density. J. Mater. Chem. A. 2022, 10, 9773-87.

68. Dong, N.; Zhang, F.; Pan, H. Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries. Chem. Sci. 2022, 13, 8243-52.

69. Xiao, X.; Wang, T.; Zhao, Y.; Gao, W.; Wang, S. A design of MnO-CNT@C3N4 cathodes for high-performance aqueous zinc-ion batteries. J. Colloid. Interface. Sci. 2023, 642, 340-50.

70. Qian, J.; Lau, S. P. MnSe2 nanocubes as an anode material for sodium-ion batteries. Mater. Today. Energy. 2018, 10, 62-7.

71. Li, G.; Sun, L.; Zhang, S.; et al. Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects. Adv. Funct. Mater. 2024, 34, 2301291.

72. Zhou, A.; Chi, R.; Shi, Y.; et al. Manganese-based cathode materials for aqueous rechargeable zinc-ion batteries: recent advance and future prospects. Mater. Today. Chem. 2023, 27, 101294.

73. Wang, N.; Zhai, Y.; Ma, X.; Qian, Y. Rationally designed hierarchical MnO2@NiO nanostructures for improved lithium ion storage. RSC. Adv. 2015, 5, 61148-54.

74. Li, L.; Peng, S.; Bucher, N.; et al. Large-scale synthesis of highly uniform Fe1-xS nanostructures as a high-rate anode for sodium ion batteries. Nano. Energy. 2017, 37, 81-9.

75. Li, J.; Li, J.; Yan, D.; et al. Design of pomegranate-like clusters with NiS2 nanoparticles anchored on nitrogen-doped porous carbon for improved sodium ion storage performance. J. Mater. Chem. A. 2018, 6, 6595-605.

76. Gao, M. R.; Xu, Y. F.; Jiang, J.; Yu, S. H. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42, 2986-3017.

77. Pei, Y.; Liu, C.; Han, Z.; et al. Revealing the impacts of metastable structure on the electrochemical properties: the case of MnS. J. Power. Sources. 2019, 431, 75-83.

78. Hao, Y.; Chen, C.; Yang, X.; et al. Studies on intrinsic phase-dependent electrochemical properties of MnS nanocrystals as anodes for lithium-ion batteries. J. Power. Sources. 2017, 338, 9-16.

79. Sakib, M. N.; Ahmed, S.; Rahat, S. M. S. M.; Shuchi, S. B. A review of recent advances in manganese-based supercapacitors. J. Energy. Storage. 2021, 44, 103322.

80. Liu, W.; Hao, J.; Xu, C.; et al. Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems. Chem. Commun. 2017, 53, 6872-4.

81. Chen, X.; Li, W.; Xu, Y.; et al. Charging activation and desulfurization of MnS unlock the active sites and electrochemical reactivity for Zn-ion batteries. Nano. Energy. 2020, 75, 104869.

82. Wang, L.; Tan, X.; Zhu, Q.; et al. The universality applications of MoS2@MnS heterojunction hollow microspheres for univalence organic or multivalence aqueous electrolyte energy storage device. J. Power. Sources. 2022, 518, 230747.

83. Xu, S.; Fan, S.; Ma, W.; Fan, J.; Li, G. Electrochemical reaction behavior of MnS in aqueous zinc ion battery. Inorg. Chem. Front. 2022, 9, 1481-9.

84. Tang, F.; Wu, X.; Shen, Y.; et al. The intercalation cathode materials of heterostructure MnS/MnO with dual ions defect embedded in N-doped carbon fibers for aqueous zinc ion batteries. Energy. Storage. Mater. 2022, 52, 180-8.

85. Ma, S. C.; Sun, M.; Sun, B. Y.; et al. In situ preparation of manganese sulfide on reduced graphene oxide sheets as cathode for rechargeable aqueous zinc-ion battery. J. Solid. State. Chem. 2021, 299, 122166.

86. Li, J.; Li, W.; Mi, H.; et al. Bifunctional oxygen electrocatalysis on ultra-thin Co9S8/MnS carbon nanosheets for all-solid-state zinc-air batteries. J. Mater. Chem. A. 2021, 9, 22635-42.

87. Wang, Y.; Fu, J.; Zhang, Y.; et al. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries. Nanoscale 2017, 9, 15865-72.

88. Hu, L.; Chen, Q. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale 2014, 6, 1236-57.

89. Imanishi, N.; Morikawa, T.; Kondo, J.; et al. Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery. J. Power. Sources. 1999, 79, 215-9.

90. Chong, S.; Yang, J.; Sun, L.; Guo, S.; Liu, Y.; Liu, H. K. Potassium nickel iron hexacyanoferrate as ultra-long-life cathode material for potassium-ion batteries with high energy density. ACS. Nano. 2020, 14, 9807-18.

91. Guo, Z. Y.; Li, C. X.; Gao, M.; et al. Mn-O covalency governs the intrinsic activity of Co-Mn spinel oxides for boosted peroxymonosulfate activation. Angew. Chem. Int. Ed. 2021, 60, 274-80.

92. Zhang, M.; Dong, T.; Li, D.; Wang, K.; Wei, X.; Liu, S. High-performance aqueous sodium-ion battery based on graphene-doped Na2 MnFe(CN)6-zinc with a highly stable discharge platform and wide electrochemical stability. Energy. Fuels. 2021, 35, 10860-8.

93. Kuperman, N.; Cairns, A.; Goncher, G.; Solanki, R. Structural water enhanced intercalation of magnesium ions in copper hexacyanoferrate nonaqueous batteries. Electrochim. Acta. 2020, 362, 137077.

94. Cao, J.; Zhang, D.; Zhang, X.; et al. Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode. Appl. Surf. Sci. 2020, 534, 147630.

95. Zhou, Y.; Chen, F.; Arandiyan, H.; et al. Oxide-based cathode materials for rechargeable zinc ion batteries: progresses and challenges. J. Energy. Chem. 2021, 57, 516-42.

96. Li, W.; Gao, X.; Chen, Z.; et al. Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery. Chem. Eng. J. 2020, 402, 125509.

97. Song, M.; Tan, H.; Chao, D.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.

98. Xu, Y.; Zheng, S.; Tang, H.; Guo, X.; Xue, H.; Pang, H. Prussian blue and its derivatives as electrode materials for electrochemical energy storage. Energy. Storage. Mater. 2017, 9, 11-30.

99. Wang, B.; Liu, S.; Sun, W.; et al. Intercalation pseudocapacitance boosting ultrafast sodium storage in Prussian blue analogs. ChemSusChem 2019, 12, 2415-20.

100. Bie, X.; Kubota, K.; Hosaka, T.; Chihara, K.; Komaba, S. Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries. J. Power. Sources. 2018, 378, 322-30.

101. Jiang, X.; Liu, H.; Song, J.; Yin, C.; Xu, H. Hierarchical mesoporous octahedral K2Mn1-xCoxFe(CN)6 as a superior cathode material for sodium-ion batteries. J. Mater. Chem. A. 2016, 4, 16205-12.

102. Kim, H.; Yoon, G.; Park, I.; et al. Anomalous Jahn-Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries. Energy. Environ. Sci. 2015, 8, 3325-35.

103. Wang, C.; Xing, L.; Vatamanu, J.; et al. Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries. Nat. Commun. 2019, 10, 3423.

104. Zhang, S.; Gu, H.; Pan, H.; et al. A novel strategy to suppress capacity and voltage fading of Li- and Mn-rich layered oxide cathode material for lithium-ion batteries. Adv. Energy. Mater. 2017, 7, 1601066.

105. Li, M.; Sciacca, R.; Maisuradze, M.; et al. Electrochemical performance of manganese hexacyanoferrate cathode material in aqueous Zn-ion battery. Electrochim. Acta. 2021, 400, 139414.

106. Liu, B.; Zhao, R.; Zhang, Q.; et al. Ultrafine manganese hexacyanoferrate with low defects regulated by potassium polyacrylate for high-performance aqueous Zn-ion batteries. J. Energy. Storage. 2023, 72, 108535.

107. Xue, Y.; Zhou, H.; Ji, Z.; et al. In-situ coupling of N-doped carbon dots with manganese hexacyanoferrate as a cathode material for aqueous zinc-ion batteries. Appl. Surf. Sci. 2023, 633, 157580.

108. Chen, W.; Wu, J.; Fu, K.; et al. Co-solvent electrolyte design to inhibit phase transition toward high performance K+/Zn2+ hybrid battery. Small. Methods. 2024, 8, e2300617.

109. Tan, Y.; Yang, H.; Miao, C.; et al. Hydroxylation strategy unlocking multi-redox reaction of manganese hexacyanoferrate for aqueous zinc-ion battery. Chem. Eng. J. 2023, 457, 141323.

110. Li, Q.; Ma, K.; Yang, G.; Wang, C. High-voltage non-aqueous Zn/K1.6Mn1.2Fe(CN)6 batteries with zero capacity loss in extremely long working duration. Energy. Storage. Mater. 2020, 29, 246-53.

111. Wang, L.; Wang, Z.; Xie, L.; Zhu, L.; Cao, X. An enabling strategy for ultra-fast lithium storage derived from micro-flower-structured NiX (X=O, S, Se). Electrochim. Acta. 2020, 343, 136138.

112. Miao, C.; Xiao, X.; Gong, Y.; et al. Facile synthesis of metal-organic framework-derived CoSe2 nanoparticles embedded in the N-doped carbon nanosheet array and application for supercapacitors. ACS. Appl. Mater. Interfaces. 2020, 12, 9365-75.

113. Zhao, B.; Liu, Q.; Wei, G.; et al. Synthesis of CoSe2 nanoparticles embedded in N-doped carbon with conformal TiO2 shell for sodium-ion batteries. Chem. Eng. J. 2019, 378, 122206.

114. Pathak, M.; Tamang, D.; Kandasamy, M.; Chakraborty, B.; Rout, C. S. A comparative experimental and theoretical investigation on energy storage performance of CoSe2, NiSe2 and MnSe2 nanostructures. Appl. Mater. Today. 2020, 19, 100568.

115. Lu, W.; Xue, M.; Chen, X.; Chen, C. CoSe2 nanoparticles as anode for lithium ion battery. Int. J. Electrochem. Sci. 2017, 12, 1118-29.

116. Zheng, C.; Chen, C.; Chen, L.; Wei, M. A CMK-5-encapsulated MoSe2 composite for rechargeable lithium-ion batteries with improved electrochemical performance. J. Mater. Chem. A. 2017, 5, 19632-8.

117. Zhang, K.; Hu, Z.; Liu, X.; Tao, Z.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305-9.

118. Zhu, S.; Li, Q.; Wei, Q.; et al. NiSe2 nanooctahedra as an anode material for high-rate and long-life sodium-ion battery. ACS. Appl. Mater. Interfaces. 2017, 9, 311-6.

119. Ali, Z.; Tang, T.; Huang, X.; Wang, Y.; Asif, M.; Hou, Y. Cobalt selenide decorated carbon spheres for excellent cycling performance of sodium ion batteries. Energy. Storage. Mater. 2018, 13, 19-28.

120. Gao, J.; Li, Y.; Shi, L.; Li, J.; Zhang, G. Rational design of hierarchical nanotubes through encapsulating CoSe2 nanoparticles into MoSe2/C composite shells with enhanced lithium and sodium storage performance. ACS. Appl. Mater. Interfaces. 2018, 10, 20635-42.

121. Yin, H.; Qu, H. Q.; Liu, Z.; Jiang, R. Z.; Li, C.; Zhu, M. Q. Long cycle life and high rate capability of three dimensional CoSe2 grain-attached carbon nanofibers for flexible sodium-ion batteries. Nano. Energy. 2019, 58, 715-23.

122. Sun, R.; Xu, F.; Wang, C. H.; Lu, S. J.; Zhang, Y. F.; Fan, H. S. Rational design of metal selenides nanomaterials for alkali metal ion (Li+/Na+/K+) batteries: current status and perspectives. Rare. Met. 2024, 43, 1906-31.

123. Chen, L.; Liu, Z.; Yang, W.; et al. Micro-mesoporous cobalt phosphosulfide (Co3S4/CoP/NC) nanowires for ultrahigh rate capacity and ultrastable sodium ion battery. J. Colloid. Interface. Sci. 2024, 666, 416-23.

124. Mukesh, P.; Sagar, G. L.; Brijesh, K.; et al. Impact of copper doping on the electrochemical response of MnSe2 as anode for lithium-ion battery. J. Mater. Sci. Mater. Electron. 2024, 35, 12630.

125. Ma, S.; Wang, S. Hydrothermally prepared MnSe2 nanosheets as a novel electrode material for supercapacitor. Meet. Abstr. 2019, MA2019-02, 37.

126. Xie, J.; Liu, G.; Jiang, X.; Sui, Z.; Gao, S. One-step co-precipitation of MnSe2/CNTs as a high-performance cathode material for zinc-ion batteries. Ceram. Int. 2023, 49, 10165-71.

127. Li, X.; Xie, J.; Liu, G.; et al. High energy storage performance MnSe2 cathode by one-step deposition strategy in aqueous zinc-ion batteries. J. Alloys. Compd. 2023, 937, 168424.

128. Premkumar, M.; Vadivel, S.; Ramachandran, K.; Alshgari, R. A. Facile synthesis of novel MnSe2/Ppy based cathode material for high capacity aqueous Zn-ion batteries. J. Energy. Storage. 2024, 93, 112210.

129. Gao, X.; Shen, C.; Dong, H.; et al. Co-intercalation strategy for simultaneously boosting two-electron conversion and bulk stabilization of Mn-based cathodes in aqueous zinc-ion batteries. Energy. Environ. Sci. 2024, 17, 2287-97.

130. Zhao, Z.; Ding, J.; Zhou, H.; Zhu, R.; Pang, H. Correction: concentration as a trigger to improve electrocatalytic activity of a Prussian blue analogue in glucose oxidation. CrystEngComm 2020, 22, 4190.

131. Wang, Y.; Wang, Y.; Zhang, L.; Liu, C. S.; Pang, H. PBA@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction. Chem. Asian. J. 2019, 14, 2790-5.

132. Xu, D.; Wang, H.; Li, F.; et al. Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv. Mater. Inter. 2019, 6, 1801506.

133. Chen, L.; Yang, Z.; Cui, F.; Meng, J.; Chen, H.; Zeng, X. Enhanced rate and cycling performances of hollow V2O5 nanospheres for aqueous zinc ion battery cathode. Appl. Surf. Sci. 2020, 507, 145137.

134. Bai, Y.; Zhang, H.; Xiang, B.; Yao, Q.; Dou, L.; Dong, G. Engineering porous structure in Bi-component-active ZnO quantum dots anchored vanadium nitride boosts reaction kinetics for zinc storage. Nano. Energy. 2021, 89, 106386.

135. Park, J. S.; Wang, S. E.; Jung, D. S.; Lee, J. K.; Kang, Y. C. Nanoconfined vanadium nitride in 3D porous reduced graphene oxide microspheres as high-capacity cathode for aqueous zinc-ion batteries. Chem. Eng. J. 2022, 446, 137266.

136. Lv, T.; Peng, Y.; Zhang, G.; et al. How about vanadium-based compounds as cathode materials for aqueous zinc ion batteries? Adv. Sci. 2023, 10, e2206907.

137. Rong, Y.; Chen, H.; Wu, J.; Yang, Z.; Deng, L.; Fu, Z. Granular vanadium nitride (VN) cathode for high-capacity and stable zinc-ion batteries. Ind. Eng. Chem. Res. 2021, 60, 8649-58.

138. Zhang, Y.; Jiang, S.; Li, Y.; et al. In situ grown hierarchical electrospun nanofiber skeletons with embedded vanadium nitride nanograins for ultra-fast and super-long cycle life aqueous Zn-ion batteries. Adv. Energy. Mater. 2023, 13, 2202826.

139. Yuan, Z.; Yang, X.; Lin, C.; et al. Progressive activation of porous vanadium nitride microspheres with intercalation-conversion reactions toward high performance over a wide temperature range for zinc-ion batteries. J. Colloid. Interface. Sci. 2023, 640, 487-97.

140. Chen, X.; Wang, L.; Li, H.; Cheng, F.; Chen, J. Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J. Energy. Chem. 2019, 38, 20-5.

141. Hu, P.; Yan, M.; Zhu, T.; et al. Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS. Appl. Mater. Interfaces. 2017, 9, 42717-22.

142. Li, J.; Mccoll, K.; Lu, X.; et al. Multi-scale investigations of δ-Ni0.25V2O5·nH2O cathode materials in aqueous zinc-ion batteries. Adv. Energy. Mater. 2020, 10, 2000058.

143. Shin, J.; Choi, D. S.; Lee, H. J.; Jung, Y.; Choi, J. W. Hydrated intercalation for high-performance aqueous zinc ion batteries. Adv. Energy. Mater. 2019, 9, 1900083.

144. Park, J. S.; Jo, J. H.; Aniskevich, Y.; et al. Open-structured vanadium dioxide as an intercalation host for Zn ions: investigation by first-principles calculation and experiments. Chem. Mater. 2018, 30, 6777-87.

145. Chen, D.; Lu, M.; Wang, B.; et al. Uncover the mystery of high-performance aqueous zinc-ion batteries constructed by oxygen-doped vanadium nitride cathode: cationic conversion reaction works. Energy. Storage. Mater. 2021, 35, 679-86.

146. Xu, X.; Ye, C.; Chao, D.; Davey, K.; Qiao, S. Z. Initiating Jahn-Teller effect in vanadium diselenide for high performance magnesium-based batteries operated at -40 °C. Adv. Energy. Mater. 2023, 13, 2204344.

147. Bai, Y.; Zhang, H.; Xiang, B.; et al. Selenium defect boosted electrochemical performance of binder-free VSe2 nanosheets for aqueous zinc-ion batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 23230-8.

148. Liu, Y.; Liu, Y.; Wu, X. Defect engineering of vanadium-based electrode materials for zinc ion battery. Chin. Chem. Lett. 2023, 34, 107839.

149. Yang, J.; Yang, H.; Ye, C.; Li, T.; Chen, G.; Qiu, Y. Conformal surface-nanocoating strategy to boost high-performance film cathodes for flexible zinc-ion batteries as an amphibious soft robot. Energy. Storage. Mater. 2022, 46, 472-81.

150. Liu, Y.; Liu, Y.; Wu, X.; Cho, Y. R. Enhanced electrochemical performance of Zn/VOx batteries by a carbon-encapsulation strategy. ACS. Appl. Mater. Interfaces. 2022, 14, 11654-62.

151. Cai, S.; Wu, Y.; Chen, H.; et al. Why does the capacity of vanadium selenide based aqueous zinc ion batteries continue to increase during long cycles? J. Colloid. Interface. Sci. 2022, 615, 30-7.

152. Yang, M.; Wang, Y.; Ma, D.; et al. Unlocking the interfacial adsorption-intercalation pseudocapacitive storage limit to enabling all-climate, high energy/power density and durable Zn-ion batteries. Angew. Chem. Int. Ed. 2023, 62, e202304400.

153. Qin, H.; Yang, Z.; Chen, L.; Chen, X.; Wang, L. A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite. J. Mater. Chem. A. 2018, 6, 23757-65.

154. He, P.; Yan, M.; Zhang, G.; et al. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy. Mater. 2017, 7, 1601920.

155. Jiao, T.; Yang, Q.; Wu, S.; et al. Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. J. Mater. Chem. A. 2019, 7, 16330-8.

156. Pu, X.; Song, T.; Tang, L.; et al. Rose-like vanadium disulfide coated by hydrophilic hydroxyvanadium oxide with improved electrochemical performance as cathode material for aqueous zinc-ion batteries. J. Power. Sources. 2019, 437, 226917.

157. Chen, T.; Zhu, X.; Chen, X.; et al. VS2 nanosheets vertically grown on graphene as high-performance cathodes for aqueous zinc-ion batteries. J. Power. Sources. 2020, 477, 228652.

158. Yin, B. S.; Zhang, S. W.; Xiong, T.; et al. Engineering sulphur vacancy in VS2 as high performing zinc-ion batteries with high cyclic stability. New. J. Chem. 2020, 44, 15951-7.

159. Yu, D.; Wei, Z.; Zhang, X.; et al. Boosting Zn2+ and NH4+ storage in aqueous media via in-situ electrochemical induced VS2/VOx heterostructures. Adv. Funct. Mater. 2021, 31, 2008743.

160. Liu, J.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. A VS2@N-doped carbon hybrid with strong interfacial interaction for high-performance rechargeable aqueous Zn-ion batteries. J. Mater. Chem. C. 2021, 9, 6308-15.

161. Zhu, J.; Jian, T.; Wu, Y.; et al. A highly stable aqueous Zn/VS2 battery based on an intercalation reaction. Appl. Surf. Sci. 2021, 544, 148882.

162. Yang, M.; Wang, Z.; Ben, H.; et al. Boosting the zinc ion storage capacity and cycling stability of interlayer-expanded vanadium disulfide through in-situ electrochemical oxidation strategy. J. Colloid. Interface. Sci. 2022, 607, 68-75.

163. Samanta, P.; Ghosh, S.; Jang, W.; Yang, C.; Murmu, N. C.; Kuila, T. A reversible anodizing strategy in a hybrid electrolyte Zn-ion battery through structural modification of a vanadium sulfide cathode. ACS. Appl. Energy. Mater. 2021, 4, 10656-67.

164. Chen, K.; Li, X.; Zang, J.; et al. Robust VS4@rGO nanocomposite as a high-capacity and long-life cathode material for aqueous zinc-ion batteries. Nanoscale 2021, 13, 12370-8.

165. Zhu, Q.; Xiao, Q.; Zhang, B.; et al. VS4 with a chain crystal structure used as an intercalation cathode for aqueous Zn-ion batteries. J. Mater. Chem. A. 2020, 8, 10761-6.

166. Liu, S.; Chen, X.; Zhang, Q.; Zhou, J.; Cai, Z.; Pan, A. Fabrication of an inexpensive hydrophilic bridge on a carbon substrate and loading vanadium sulfides for flexible aqueous zinc-ion batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 36676-84.

167. Han, J. H.; Lee, S.; Cheon, J. Synthesis and structural transformations of colloidal 2D layered metal chalcogenide nanocrystals. Chem. Soc. Rev. 2013, 42, 2581-91.

168. Feng, J.; Peng, L.; Wu, C.; et al. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 2012, 24, 1969-74.

169. Mai, L.; Wei, Q.; An, Q.; et al. Nanoscroll buffered hybrid nanostructural VO2 (B) cathodes for high-rate and long-life lithium storage. Adv. Mater. 2013, 25, 2969-73.

170. Bai, J.; Li, X.; Liu, G.; Qian, Y.; Xiong, S. Unusual formation of ZnCo2O4 3D hierarchical twin microspheres as a high-rate and ultralong-life lithium-ion battery anode material. Adv. Funct. Mater. 2014, 24, 3012-20.

171. Wang, T.; Gao, W.; Zhao, Y.; Wang, S.; Huang, W. Self-assembled VS2 microflowers buffering volume change during charging and discharging towards high-performance zinc ion batteries. J. Mater. Sci. Technol. 2024, 173, 107-13.

172. Zhu, Q.; Cheng, M.; Zhang, B.; et al. Realizing a rechargeable high-performance Cu-Zn battery by adjusting the solubility of Cu2+. Adv. Funct. Mater. 2019, 29, 1905979.

173. Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I. The future cost of electrical energy storage based on experience rates. Nat. Energy. 2017, 2, 2017110.

174. Du, M.; Zhang, F.; Zhang, X.; et al. Calcium ion pinned vanadium oxide cathode for high-capacity and long-life aqueous rechargeable zinc-ion batteries. Sci. China. Chem. 2020, 63, 1767-76.

175. Gao, X.; Liu, K.; Su, C.; et al. From bibliometric analysis: 3D printing design strategies and battery applications with a focus on zinc-ion batteries. SmartMat 2024, 5, e1197.

176. Niu, F.; Bai, Z.; Chen, J.; et al. In situ molecular engineering strategy to construct hierarchical MoS2 double-layer nanotubes for ultralong lifespan “rocking-chair” aqueous zinc-ion batteries. ACS. Nano. 2024, 18, 6487-99.

177. Lu, S. J.; Lin, J. Y.; Wang, C. H.; Zhang, Y. F.; Zhang, Y.; Fan, H. S. Heterogeneous engineering of MnSe@NC@ReS2 core-shell nanowires for advanced sodium-/potassium-ion batteries. Rare. Met. 2024, 43, 3713-23.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/