REFERENCES
1. De, L. P.; Hahn, C.; Higgins, D.; et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 6438, evva3506.
2. Rogelj, J.; den, E. M.; Hohne, N.; et al. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 7609, 631-9.
3. Shen, C.; Meng, X. Y.; Zou, R.; et al. Boosted sacrificial-agent-free selective photoreduction of CO2 to CH3OH by rhenium atomically dispersed on indium oxide. Angew. Chem. Int. Ed. Engl. 2024, 63, e202402369.
4. Ren, X.; Liu, F.; Wu, H.; et al. Reconstructed bismuth oxide through in situ carbonation by carbonate-containing electrolyte for highly active electrocatalytic CO2 reduction to formate. Angew. Chem. Int. Ed. Engl. 2024, 63, e202316640.
5. Liu, F.; Ren, X.; Zhao, J.; et al. Inhibiting sulfur dissolution and enhancing activity of sns for CO2 electroreduction via electronic state modulation. ACS. Catal. 2022, 12, 13533-41.
6. Liu, F.; Wang, J.; Ren, X.; et al. In-situ reconstructed in doped SnO2 amorphous-crystalline heterostructure for highly efficient CO2 electroreduction with a dynamic structure-function relationship. Appl. Catal. B-Environ. 2024, 352, 124004.
7. Jiao, J.; Lin, R.; Liu, S.; Cheong, W. C.; Zhang, C.; et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 3, 222-8.
8. Cai, Y.; Fu, J.; Zhou, Y.; et al. Insights on forming NO-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 2021, 1, 586.
9. Zhang, T.; Li, W.; Huang, K. et al. Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion. Nat. Commun. 2021, 1, 5265.
10. Liu, X. C.; Wei, C.; Wu, Y.; et al. Tailoring the electrochemical protonation behavior of CO2 by tuning surface noncovalent interactions. ACS. Catalysis. 2021, 24, 14986-94.
11. Zhang, Z.; Ahmad, F.; Zhao, W.; et al. Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide. Nano. Lett. 2019, 6, 4029-34.
12. Zhao, Q.; Zhang, C.; Hu, R.; et al. Selective etching quaternary MAX phase toward single atom copper immobilized mxene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS. Nano. 2021, 3, 4927-36.
13. Francke, R.; Schille, B.; Roemelt, M. Homogeneously catalyzed electroreduction of carbon dioxide - methods mechanisms and catalysts. Chem. Rev. 2018, 9, 4631-701.
15. Yin, J.; Gao, Z.; Wei, F.; et al. Customizable CO2 electroreduction to C1 or C2+ products through Cuy/CeO2 interface engineering. ACS. Catalysis. 2022, 2, 1004-11.
16. Gao, D.; Zegkinoglou, I.; Divins, N. J.; et al. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS. Nano. 2017, 5, 4825-31.
17. Ma, W.; Xie, S.; Liu, T.; et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper. Nature. Catalysis. 2020, 6, 478-87.
18. Fan, L.; Xia, C.; Yang, F.; Wang, J.; Wang, H.; Lu, Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.
19. Guzmán, H.; Russo, N.; Hernández, S. CO2 valorisation towards alcohols by Cu-based electrocatalysts: challenges and perspectives. Green. Chem. 2021, 5, 1896-1920.
20. Nitopi, S.; Bertheussen, E.; Scott, S. B.; et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 12, 7610-72.
21. Gu, J.; Hsu, C. S.; Bai, L.; Chen, H. M.; Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091-4.
22. Ross, M. B.; De, L. P.; Li, Y.; et al. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 8, 648-58.
23. Singh, M. R.; Kwon, Y.; Lum, Y.; et al. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 2016, 39, 13006-12.
24. Huang, Y.; Ong, C. W.; Yeo, B. S. Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper (100) and (111) surfaces. ChemSusChem 2018, 18, 3299-306.
25. Kortlever, R.; Shen, J.; Schouten, K. J.; Calle-Vallejo, F.; Koper, M. T. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 20, 4073-82.
26. Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 2009, 1, 89-99.
27. Zhang, H.; Ma, Y.; Quan, F.; et al. Selective electro-reduction of CO2 to formate on nanostructured Bi from reduction of BiOCl nanosheets. Electrochem. Commun. 2014, 46, 63-6.
28. Zhang, J.; Lin, Q.; Wang, Z.; et al. Identifying water oxidation mechanisms at pure and titanium-doped hematite-based photoanodes with spectroelectrochemistry. Small. Methods. 2021, 12, e2100976.
29. Ricinschi, D.; Yun, K. Y.; Okuyama, M. A mechanism for the 150 µC cm-2 polarization of BiFeO3 films based on first-principles calculations and new structural data. J. Phys. Condens. Matter. 2006, 18, L97.
30. Han, N.; Wang, Y.; Yang, H.; et al. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 2018, 1, 1320.
31. Yang, Z.; Oropeza, F. E.; Zhang, K. H. L. P-block metal-based (Sn In Bi Pb) electrocatalysts for selective reduction of CO2 to formate. APL. Materials. 2020, 6, 060901.
32. Xiao, J.; Liu, S.; Sui, P. F.; et al. In-situ generated hydroxides realize near-unity CO selectivity for electrochemical CO2 reduction. Chem. Eng. J. 2022, 433, 133785.
33. Komatsu, S.; Yanagihara, T.; Hiraga, Y.; Tanaka, M.; Kunugi, A. Electrochemical reduction of CO2 at Sb and Bi electrodes in KHCO3 solution. Denki. Kagaku. oyobi. Kogyo. Butsuri. Kagaku. 1995, 3, 217-224.
34. DiMeglio, J. L.; Rosenthal, J. Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. J. Am. Chem. Soc. 2013, 24, 8798-801.
35. Medina-Ramos, J.; Pupillo, R. C.; Keane, T. P.; DiMeglio, J. L.; Rosenthal, J. Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts. J. Am. Chem. Soc. 2015, 15, 5021-7.
36. Han, N.; Ding, P.; He, L.; Li, Y.; Li, Y. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy. Mater. 2019, 11, 201902338.
37. Li, P.; Yang, F.; Li, J.; et al. Nanoscale engineering of P-block metal-based catalysts toward industrial-scale electrochemical reduction of CO2. Adv. Energy. Mater. 2023, 34, 202301597.
38. Guan, Y.; Liu, M.; Rao, X.; Liu, Y.; Zhang, J. Electrochemical reduction of carbon dioxide (CO2): bismuth-based electrocatalysts. J. Mater. Chem. A. 2021, 24, 13770-803.
39. Xia, D.; Yu, H.; Xie, H.; et al. Recent progress of Bi-based electrocatalysts for electrocatalytic CO2 reduction. Nanoscale 2022, 22, 7957-73.
40. Pan, F.; Yang, X.; O’Carroll, T.; et al. Carbon catalysts for electrochemical CO2 reduction toward multicarbon products. Adv. Energy. Mater. 2022, 24, 202200586.
41. Koh, J. H.; Won, D. H.; Eom, T.; et al. Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of bi dendrite catalyst. ACS. Catal. 2017, 8, 5071-77.
42. Chen, J.; Tang, H.; Sun, Z.; Duan, L. Recent progress and challenges in heterogeneous CO2 catalytic activation. Curr. Opin. Green. Sust. 2023, 39, 100720.
43. Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: a classification problem. Chemphyschem 2017, 22, 3266-73.
44. Jiang, H.; He, Q.; Zhang, Y.; Song, L. Structural self-reconstruction of catalysts in electrocatalysis. Acc. Chem. Res. 2018, 11, 2968-77.
45. Wang, F.; Li, Y.; Xia, X.; et al. Metal-CO2 electrochemistry: from CO2 recycling to energy storage. Adv. Energy. Mater. 2021, 25, 202100667.
46. Huang, J.; Hormann, N.; Oveisi, E.; et al. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat. Commun. 2018, 1, 3117.
47. Kuznetsov, D. A.; Han, B.; Yu, Y.; et al. Tuning redox transitions via inductive effect in metal oxides and complexes and implications in oxygen electrocatalysis. Joule 2018, 2, 225-44.
48. De, L. P.; Quintero-Bermudez, R.; Dinh, C. T.; et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nature. Catalysis. 2018, 2, 103-10.
49. Liu, X.; Meng, J.; Zhu, J.; et al. Comprehensive understandings into complete reconstruction of precatalysts: synthesis applications and characterizations. Adv. Mater. 2021, 32, e2007344.
50. Cao, C.; Ma, D. D.; Gu, J. F.; et al. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem. Int. Ed. Engl. 2020, 35, 15014-20.
51. Lamagni, P.; Miola, M.; Catalano, J.; et al. Restructuring metal-organic frameworks to nanoscale bismuth electrocatalysts for highly active and selective CO2 reduction to formate. Adv. Funct. Mater. 2020, 16;201910408.
52. Wang, H.; Tong, Y.; Chen, P. Microenvironment regulation strategies of single-atom catalysts for advanced electrocatalytic CO2 reduction to CO. Nano. Energy. 2023, 118, 108967.
53. Zhang, E.; Wang, T.; Yu, K.; et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 42, 16569-73.
54. Santra, S.; Streibel, V.; Wagner, L. I.; et al. Tuning carbon dioxide reduction reaction selectivity of bi single-atom electrocatalysts with controlled coordination environments. ChemSusChem 2024, 17, e202301452.
55. Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc. Chem. Res. 2019, 1, 237-47.
56. Darby, M. T.; Stamatakis, M.; Michaelides, A.; Sykes, E. C. H. Lonely atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys. J. Phys. Chem. Lett. 2018, 18, 5636-46.
57. Greiner, M. T.; Jones, T. E.; Beeg, S.; et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 2018, 10, 1008-15.
58. Sun, G.; Zhao, Z. J.; Mu, R.; et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 1, 4454.
59. Cao, Y.; Chen, S.; Bo, S.; et al. Single atom bi decorated copper alloy enables C-C coupling for electrocatalytic reduction of CO2 into C2+ Products. Angew. Chem. Int. Ed. Engl. 2023, 30, e202303048.
60. Fan, K.; Jia, Y.; Ji, Y.; et al. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS. Catalysis. 2019, 1, 358-64.
61. Guan, A.; Yang, C.; Quan, Y.; et al. One-dimensional nanomaterial electrocatalysts for CO2 Fixation. Chem. Asian. J. 2019, 22, 3969-80.
62. Zhang, X.; Sun, X.; Guo, S. X.; Bond, A. M.; Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energ. Environ. Sci. 2019, 4, 1334-40.
63. Zhang, W.; Hu, Y.; Ma, L.; et al. Liquid-phase exfoliated ultrathin Bi nanosheets: uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure. Nano. Energy. 2018, 53, 808-16.
64. Hu, Y.; Liang, J.; Gu, Y.; et al. Sandwiched epitaxy growth of 2D single-crystalline hexagonal bismuthene nanoflakes for electrocatalytic CO2 reduction. Nano. Letters. 2023, 22, 10512-21.
65. Feng, X.; Zou, H.; Zheng, R.; et al. Bi2O3/BiO2 nanoheterojunction for highly efficient electrocatalytic CO2 reduction to formate. Nano. Lett. 2022, 4, 1656-64.
66. Tian, J.; Wang, R.; Shen, M.; et al. Bi-Sn oxides for highly selective CO2 electroreduction to formate in a wide potential window. ChemSusChem 2021, 10, 2247-54.
67. Gong, Q.; Ding, P.; Xu, M.; et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 2019, 1, 2807.
68. Yang, S.; Jiang, M.; Zhang, W.; et al. In situ structure refactoring of bismuth nanoflowers for highly selective electrochemical reduction of CO2 to formate. Adv. Funct. Mater. 2023, 37, 202301984.
69. Tran-Phu, T.; Daiyan, R.; Fusco, Z.; et al. Nanostructured β-Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate. Adv. Funct. Mater. 2019, 3, 201906478.
70. Liu, S.; Lu, X. F.; Xiao, J.; et al. Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem. Int. Ed. Engl. 2019, 39, 13828-33.
71. Ye, K.; Zhou, Z.; Shao, J.; et al. In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem. Int. Ed. Engl. 2020, 12, 4814-21.
72. Das, S.; Perez-Ramirez, J.; Gong, J.; et al. Core-shell structured catalysts for thermocatalytic photocatalytic and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 10, 2937-3004.
73. Zhao, Y.; Liu, X.; Liu, Z.; et al. Spontaneously Sn-doped Bi/BiOx core-shell nanowires toward high-performance CO2 electroreduction to liquid fuel. Nano. Lett. 2021, 16, 6907-13.
74. Zhang, Y.; Zhang, X.; Ling, Y.; et al. Controllable synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation for enhanced CO2 reduction performance. Angew. Chem. Int. Ed. Engl. 2018, 40, 13283-87.
75. Lv, W.; Bei, J.; Zhang, R.; et al. Bi2O2CO3 nanosheets as electrocatalysts for selective reduction of CO2 to formate at low overpotential. ACS. Omega. 2017, 6, 2561-7.
76. Wang, Y.; Wang, B.; Jiang, W.; et al. Sub-2 nm ultra-thin Bi2O2CO3 nanosheets with abundant Bi-O structures toward formic acid electrosynthesis over a wide potential window. Nano. Research. 2021, 4, 2919-27.
77. Fu, H. Q.; Liu, J.; Bedford, N. M.; et al. Operando converting BiOCl into Bi2O2(CO3)xCly for efficient electrocatalytic reduction of carbon dioxide to formate. Nanomicro. Lett. 2022, 1, 121.
78. Wu, M.; Xiong, Y.; Hu, B.; et al. Indium doped bismuth subcarbonate nanosheets for efficient electrochemical reduction of carbon dioxide to formate in a wide potential window. J. Colloid. Interface. Sci. 2022, 624, 261-9.
79. Lv, L.; Lu, R.; Zhu, J.; et al. Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate. Angew. Chem. Int. Ed. Engl. 2023, 25, e202303117.
80. Wang, Z.; Wang, C.; Hu, Y.; et al. Simultaneous diffusion of cation and anion to access N S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano. Research. 2021, 8, 2790-6.
81. Luo, Y.; Chen, S.; Zhang, J.; et al. Perovskite-derived bismuth with I- and Cs+ dual modification for high-efficiency CO2 -to-formate electrosynthesis and Al-CO2 batteries. Adv. Mater. 2023, 36, e2303297.
82. Yang, S.; An, H.; Arnouts, S.; et al. Halide-guided active site exposure in bismuth electrocatalysts for selective CO2 conversion into formic acid. Nature. Catalysis. 2023, 9, 796-806.
83. Wang, D.; Wang, Y.; Chang, K.; et al. Residual iodine on in situ transformed bismuth nanosheets induced activity difference in CO2 electroreduction. J. CO2. Utili. 2022, 55, 101802.
84. Li, Y.; Chen, J.; Chen, S.; et al. In situ confined growth of bismuth nanoribbons with active and robust edge sites for boosted CO2 electroreduction. ACS. Energy. Letters. 2022, 4, 1454-61.
85. Zhao, S.; Qin, Y.; Wang, X.; et al. Anion exchange facilitates the in situ construction of Bi/Bi-O interfaces for enhanced electrochemical CO2 -to-formate conversion over a wide potential window. Small 2023, 43, e2302878.
86. Liu, S.; Fan, Y.; Wang, Y.; et al. Surface-oxygen-rich Bi@C nanoparticles for high-efficiency electroreduction of CO2 to formate. Nano. Lett. 2022, 22, 9107-14.
87. Liu, S.; Hu, B.; Zhao, J.; et al. Enhanced electrocatalytic CO2 reduction of bismuth nanosheets with introducing surface bismuth subcarbonate. Coatings 2022, 2, 12020233.
88. Li, J. F.; Huang, Y. F.; Ding, Y.; et al. Shell-isolated nanoparticle-enhanced raman spectroscopy. Nature 2010, 7287, 392-5.
89. Sui, P. F.; Gao, M. R.; Liu, S.; et al. Carbon dioxide valorization via formate electrosynthesis in a wide potential window. Adv. Funct. Mater. 2022, 32, 202203794.
90. Cui, R.; Yuan, Q.; Zhang, C.; et al. Revealing the behavior of interfacial water in te-doped bi via operando infrared spectroscopy for improving electrochemical CO2 reduction. ACS. Catalysis. 2022, 18, 11294-300.
91. Li, J.; Li, J.; Liu, X.; et al. Probing the role of surface hydroxyls for Bi Sn and In catalysts during CO2 Reduction. Appl. Catal. B. Environ. 2021, 298, 120581.
92. Zhang, H.; Liang, Z.; Huang, C.; et al. Enhanced dissociation activation of CO2 on the Bi/Cu(111) interface by the synergistic effect. J. Catal. 2022, 410, 1-9.
93. Jiang, X.; Lin, L.; Rong, Y.; et al. Boosting CO2 electroreduction to formate via bismuth oxide clusters. Nano. Res. 2022, 10, 12050-57.
94. Xiao, L.; Wang, G.; Huang, X.; et al. Efficient CO2 reduction MOFs derivatives transformation mechanism revealed by in situ liquid phase TEM. Appl. Catal. B-Environ. 2022, 307, 121164.
95. Dong, J.; Chen, J.; Wang, W.; et al. Charged microdroplets as microelectrochemical cells for CO2 reduction and C-C coupling. J. Am. Chem. Soc. 2024, 146, 2227-36.
96. Wang, Z. Y.; He, Z. H.; Li, L. Y.; et al. Research progress of CO2 oxidative dehydrogenation of propane to propylene over Cr-free metal catalysts. Rare. Metals. 2022, 41, 2129-52.
97. Jiang, Y.; Xie, H.; Han, L.; et al. Advances in TiS2 for energy storage, electronic devices, and catalysis: a review. Prog. Nat. Sci-Mater. 2023, 33, 133-50.
98. Ju, L.; Tang, X.; Kou, L. Polarization boosted catalysis: progress and outlook. Microstructures 2022, 2, 2022008.
99. Wang, J.; Zhang, Z.; Ding, J. Recent progresses of micro-nanostructured transition metal compound-based electrocatalysts for energy conversion technologies. Sci. China. Mater. 2021, 64, 1-26.
100. Wang, J.; Li, X.; Cui, B.; et al. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare. Met. 2021, 40, 3019-303.
101. Hu, Q.; Chen, Z.; Wang, J. Nanoporous nickel with rich adsorbed oxygen for efficient alkaline hydrogen evolution electrocatalysis. Sci. China. Mater. 2022, 65, 1825-32.
102. Huang, B.; Sun, Z.; Sun, G. Recent progress in cathodic reduction-enabled organic electrosynthesis: trends, challenges, and opportunities. eScience 2022, 2, 243-77.
103. Rabinowitz, J. A.; Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 2020, 11, 5231.
104. Higgins, D.; Hahn, C.; Xiang, C.; Jaramillo, T. F.; Weber, A. Z. Gas-diffusion electrode for carbon dioxide reduction: a new paradigm. ACS. Energy. Letters. 2019, 4, 317-24.
105. Pan, B.; Fan, J.; Zhang, J.; et al. Close to 90% single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly. ACS. Energy. Lett. 2022, 7, 4224-31,.