REFERENCES
1. Li, S.; Dutta, B.; Cannon, S.; et al. Programming active cohesive granular matter with mechanically induced phase changes. Sci. Adv. 2021, 7, eabe8494.
2. Duan, H.; Huo, M.; Fan, Y. From animal collective behaviors to swarm robotic cooperation. Nat. Sci. Rev. 2023, 10, nwad040.
3. Berlinger, F.; Gauci, M.; Nagpal, R. Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm. Sci. Robot. 2021, 6, eabd8668.
4. Shaw, E. Schooling fishes: the school, a truly egalitarian form of organization in which all members of the group are alike in influence, offers substantial benefits to its participants. Am. Sci. 1978, 66, 166-75. Available from: https://www.jstor.org/stable/27848512 [Last accessed on 7 Apr 2025]
6. Parrish, J. K.; Viscido, S. V.; Grünbaum, D. Self-organized fish schools: an examination of emergent properties. Biol. Bull. 2002, 202, 296-305.
7. Abdelrahman, M. K.; Wagner, R. J.; Kalairaj, M. S.; et al. Material assembly from collective action of shape-changing polymers. Nat. Mater. 2024, 23, 281-9.
8. Wagner, R. J.; Such, K.; Hobbs, E.; Vernerey, F. J. Treadmilling and dynamic protrusions in fire ant rafts. J. R. Soc. Interface. 2021, 18, 20210213.
9. Blackiston, D.; Lederer, E.; Kriegman, S.; Garnier, S.; Bongard, J.; Levin, M. A cellular platform for the development of synthetic living machines. Sci. Robot. 2021, 6, eabf1571.
10. Joh, H.; Fan, D. E. Materials and schemes of multimodal reconfigurable micro/nanomachines and robots: review and perspective. Adv. Mater. 2021, 33, e2101965.
11. Sun, B.; Kjelleberg, S.; Sung, J. J. Y.; Zhang, L. Micro- and nanorobots for biofilm eradication. Nat. Rev. Bioeng. 2024, 2, 367-9.
12. Wang, Q.; Wang, Q.; Ning, Z.; et al. Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted delivery. Sci. Robot. 2024, 9, eadh1978.
13. Wang, Q.; Xiang, N.; Lang, J.; Wang, B.; Jin, D.; Zhang, L. Reconfigurable liquid-bodied miniature machines: magnetic control and microrobotic applications. Adv. Intell. Syst. 2024, 6, 2300108.
14. Mayorga-Martinez, C. C.; Zelenka, J.; Pribyl, T.; et al. Programming self-assembling magnetic microrobots with multiple physical and chemical intelligence. Chem. Eng. J. 2024, 488, 150625.
15. Jiang, J.; Yang, L.; Hao, B.; Xu, T.; Wu, X.; Zhang, L. Automated microrobotic manipulation using reconfigurable magnetic microswarms. IEEE. Trans. Robot. 2024, 40, 3676-94.
16. Yang, L.; Jiang, J.; Gao, X.; Wang, Q.; Dou, Q.; Zhang, L. Autonomous environment-adaptive microrobot swarm navigation enabled by deep learning-based real-time distribution planning. Nat. Mach. Intell. 2022, 4, 480-93.
18. Feng, W.; He, Q.; Zhang, L. Embedded physical intelligence in liquid crystalline polymer actuators and robots. Adv. Mater. 2025, 37, e2312313.
19. Gelebart, A. H.; Jan, M. D.; Varga, M.; et al. Making waves in a photoactive polymer film. Nature 2017, 546, 632-6.
20. Ware, T. H.; McConney, M. E.; Wie, J. J.; Tondiglia, V. P.; White, T. J. Actuating materials. Voxelated liquid crystal elastomers. Science 2015, 347, 982-4.
21. Feng, W.; Broer, D. J.; Liu, D. Oscillating chiral-nematic fingerprints wipe away dust. Adv. Mater. 2018, 30, 1704970.
22. Babakhanova, G.; Turiv, T.; Guo, Y.; et al. Liquid crystal elastomer coatings with programmed response of surface profile. Nat. Commun. 2018, 9, 456.
23. Aharoni, H.; Xia, Y.; Zhang, X.; Kamien, R. D.; Yang, S. Universal inverse design of surfaces with thin nematic elastomer sheets. Proc. Natl. Acad. Sci. USA. 2018, 115, 7206-11.
24. Nie, Z. Z.; Zuo, B.; Wang, M.; et al. Light-driven continuous rotating Möbius strip actuators. Nat. Commun. 2021, 12, 2334.
25. Blanc, B.; Agyapong, J. N.; Hunter, I.; Galas, J. C.; Fernandez-Nieves, A.; Fraden, S. Collective chemomechanical oscillations in active hydrogels. Proc. Natl. Acad. Sci. USA. 2024, 121, e2313258121.
26. Chiang, M. Y.; Hsu, Y. W.; Hsieh, H. Y.; Chen, S. Y.; Fan, S. K. Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels. Sci. Adv. 2016, 2, e1600964.
27. Jin, D.; Wang, Q.; Chan, K. F.; et al. Swarming self-adhesive microgels enabled aneurysm on-demand embolization in physiological blood flow. Sci. Adv. 2023, 9, eadf9278.
28. Taylor, A. F.; Tinsley, M. R.; Wang, F.; Huang, Z.; Showalter, K. Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science 2009, 323, 614-7.
29. Tinsley, M. R.; Taylor, A. F.; Huang, Z.; Showalter, K. Emergence of collective behavior in groups of excitable catalyst-loaded particles: spatiotemporal dynamical quorum sensing. Phys. Rev. Lett. 2009, 102, 158301.
30. Tinsley, M.; Taylor, A.; Huang, Z.; Wang, F.; Showalter, K. Dynamical quorum sensing and synchronization in collections of excitable and oscillatory catalytic particles. Phys. D. Nonlinear. Phenom. 2010, 239, 785-90.
31. Toth, R.; Taylor, A. F.; Tinsley, M. R. Collective behavior of a population of chemically coupled oscillators. J. Phys. Chem. B. 2006, 110, 10170-6.
32. Na, H.; Kang, Y. W.; Park, C. S.; Jung, S.; Kim, H. Y.; Sun, J. Y. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 2022, 376, 301-7.
33. Le, X.; Lu, W.; Zhang, J.; Chen, T. Recent progress in biomimetic anisotropic hydrogel actuators. Adv. Sci. 2019, 6, 1801584.
34. Chen, Y.; Zhang, Y.; Li, H.; et al. Bioinspired hydrogel actuator for soft robotics: opportunity and challenges. Nano. Today. 2023, 49, 101764.
35. Li, W.; Guan, Q.; Li, M.; Saiz, E.; Hou, X. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Prog. Polym. Sci. 2023, 140, 101665.
36. Jiao, D.; Zhu, Q. L.; Li, C. Y.; Zheng, Q.; Wu, Z. L. Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions. ACC. Chem. Res. 2022, 55, 1533-45.
37. Apsite, I.; Salehi, S.; Ionov, L. Materials for smart soft actuator systems. Chem. Rev. 2022, 122, 1349-415.
38. López-Díaz, A.; Vázquez, A. S.; Vázquez, E. Hydrogels in soft robotics: past, present, and future. ACS. Nano. 2024, 18, 20817-26.
39. Liu, J.; Jiang, L.; He, S.; Zhang, J.; Shao, W. Recent progress in PNIPAM-based multi-responsive actuators: a mini-review. Chem. Eng. J. 2022, 433, 133496.
40. He, J.; Zhou, Q.; Ge, Z.; et al. pH-gated switch of LCST-UCST phase transition of hydrogels. Adv. Funct. Mater. 2024, 34, 2404341.
41. Jiang, Z.; Tan, M. L.; Taheri, M.; et al. Strong, self-healable, and recyclable visible-light-responsive hydrogel actuators. Angew. Chem. Int. Ed. 2020, 59, 7049-56.
42. Ter Schiphorst, J.; Coleman, S.; Stumpel, J. E.; Ben Azouz, A.; Diamond, D.; Schenning, A. P. H. J. Molecular design of light-responsive hydrogels, for in situ generation of fast and reversible valves for microfluidic applications. Chem. Mater. 2015, 27, 5925-31.
43. Li, L.; Scheiger, J. M.; Levkin, P. A. Design and applications of photoresponsive hydrogels. Adv. Mater. 2019, 31, e1807333.
44. LeValley, P. J.; Sutherland, B. P.; Jaje, J.; et al. On-demand and tunable dual wavelength release of antibody using light-responsive hydrogels. ACS. Appl. Bio. Mater. 2020, 3, 6944-58.
45. Feng, W.; Zhou, W.; Zhang, S.; Fan, Y.; Yasin, A.; Yang, H. UV-controlled shape memory hydrogels triggered by photoacid generator. RSC. Adv. 2015, 5, 81784-9.
46. Ko, J.; Kim, C.; Kim, D.; et al. High-performance electrified hydrogel actuators based on wrinkled nanomembrane electrodes for untethered insect-scale soft aquabots. Sci. Robot. 2022, 7, eabo6463.
47. Zheng, J.; Xiao, P.; Le, X.; et al. Mimosa inspired bilayer hydrogel actuator functioning in multi-environments. J. Mater. Chem. C. 2018, 6, 1320-7.
48. Gelebart, A. H.; Vantomme, G.; Meijer, E. W.; Broer, D. J. Mastering the photothermal effect in liquid crystal networks: a general approach for self-sustained mechanical oscillators. Adv. Mater. 2017, 29, 1606712.
49. Ceron, S.; Gardi, G.; Petersen, K.; Sitti, M. Programmable self-organization of heterogeneous microrobot collectives. Proc. Natl. Acad. Sci. USA. 2023, 120, e2221913120.
51. Kim, M.; Nicholas, J. D.; Puigmartí-Luis, J.; Nelson, B. J.; Pané, S. Targeted drug delivery: from chemistry to robotics at small scales. Annu. Rev. Control. Robot. Auton. Syst. 2024, 8.
52. Wang, T.; Wu, Y.; Yildiz, E.; Kanyas, S.; Sitti, M. Clinical translation of wireless soft robotic medical devices. Nat. Rev. Bioeng. 2024, 2, 470-85.
53. Yang, L.; Jiang, J.; Ji, F.; et al. Machine learning for micro- and nanorobots. Nat. Mach. Intell. 2024, 6, 605-18.
54. Wang, Y.; Chen, H.; Xie, L.; Liu, J.; Zhang, L.; Yu, J. Swarm autonomy: from agent functionalization to machine intelligence. Adv. Mater. 2025, 37, 2312956.
56. Mayorga-Martinez, C. C.; Zhang, L.; Pumera, M. Chemical multiscale robotics for bacterial biofilm treatment. Chem. Soc. Rev. 2024, 53, 2284-99.
57. Zhu, Q. L.; Liu, W.; Khoruzhenko, O.; et al. Animating hydrogel knotbots with topology-invoked self-regulation. Nat. Commun. 2024, 15, 300.
58. Yuk, H.; Wu, J.; Zhao, X. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 2022, 7, 935-52.
59. He, Y.; Tang, J.; Hu, Y.; et al. Magnetic hydrogel-based flexible actuators: a comprehensive review on design, properties, and applications. Chem. Eng. J. 2023, 462, 142193.
60. Cheng, F. M.; Chen, H. X.; Li, H. D. Recent progress on hydrogel actuators. J. Mater. Chem. B. 2021, 9, 1762-80.
62. Puza, F.; Lienkamp, K. 3D printing of polymer hydrogels - from basic techniques to programmable actuation. Adv. Funct. Mater. 2022, 32, 2205345.
63. Dong, Y.; Ramey-Ward, A. N.; Salaita, K. Programmable mechanically active hydrogel-based materials. Adv. Mater. 2021, 33, e2006600.
64. Chen, Z.; Chen, H.; Fang, K.; Liu, N.; Yu, J. Magneto-thermal hydrogel swarms for targeted lesion sealing. Adv. Healthc. Mater. 2025, 14, e2403076.
65. Han, H.; Ma, X.; Deng, W.; et al. Imaging-guided bioresorbable acoustic hydrogel microrobots. Sci. Robot. 2024, 9, eadp3593.
66. Yoshida, R. Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials. Adv. Mater. 2010, 22, 3463-83.
67. Vantomme, G.; Elands, L. C. M.; Gelebart, A. H.; et al. Coupled liquid crystalline oscillators in Huygens' synchrony. Nat. Mater. 2021, 20, 1702-6.
68. Du, C.; Cheng, Q.; Li, K.; Yu, Y. Self-sustained collective motion of two joint liquid crystal elastomer spring oscillator powered by steady illumination. Micromachines 2022, 13, 271.
69. Wu, H.; Zhang, B.; Li, K. Synchronous behaviors of three coupled liquid crystal elastomer-based spring oscillators under linear temperature fields. Phys. Rev. E. 2024, 109, 024701.
70. Deng, Z.; Zhang, H.; Priimagi, A.; Zeng, H. Light-fueled nonreciprocal self-oscillators for fluidic transportation and coupling. Adv. Mater. 2024, 36, e2209683.
71. Hu, Z.; Fang, W.; Li, Q.; Feng, X. Q.; Lv, J. A. Optocapillarity-driven assembly and reconfiguration of liquid crystal polymer actuators. Nat. Commun. 2020, 11, 5780.
72. Dana, A.; Benson, C.; Sivaperuman Kalairaj, M.; et al. Collective action and entanglement of magnetically active liquid crystal elastomer ribbons. arXiv 2024. Available from: https://ssrn.com/abstract=4997256 [Last accessed on 7 Apr 2025]