REFERENCES
1. Rüter, C. E.; Makris, K. G.; El-Ganainy, R.; et al. Observation of parity-time symmetry in optics. Nat. Phys. 2010, 6, 192-5.
2. Liu, L.; Zhao, T.; Lin, W.; et al. Symmetry breaking for current-induced magnetization switching. Appl. Phys. Rev. 2023, 10, 021319.
3. Dembowski, C.; Dietz, B.; Graf, H. D.; et al. Observation of a chiral state in a microwave cavity. Phys. Rev. Lett. 2003, 90, 034101.
4. Zhang, X.; Zhu, T.; Zhang, S.; et al. Light-induced giant enhancement of nonreciprocal transport at KTaO3-based interfaces. Nat. Commun. 2024, 15, 2992.
5. Li, C. N.; Liang, H. P.; Zhao, B. Q.; Wei, S. H.; Zhang, X. Machine learning assisted crystal structure prediction made simple. J. Mater. Inf. 2024, 4, 15.
6. Ji, W.; Wen, X. G. Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions. Phys. Rev. Res. 2020, 2, 033417.
8. Li, C.; Wang, R.; Zhang, S.; et al. Observation of giant non-reciprocal charge transport from quantum hall states in a topological insulator. Nat. Mater. 2024, 23, 1208-13.
9. Zhao, H. J.; Chen, P.; Paillard, C.; et al. Large spin splittings due to the orbital degree of freedom and spin textures in a ferroelectric nitride perovskite. Phys. Rev. B. 2020, 102, 041203.
10. Brunschwig, B. S.; Creutz, C.; Surin, N. Optical transitions of symmetrical mixed-valence systems in the class Ⅱ-Ⅲ transition regime. Chem. Soc. Rev. 2000, 31, 168-84.
11. Chen, Z.; Qiu, H.; Cheng, X.; et al. Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films. Nat. Commun. 2024, 15, 2605.
12. Niu, W.; Fang, Y. W.; Liu, R.; et al. Fully optical modulation of the two-dimensional electron gas at the γ-Al2O3/SrTiO3 interface. J. Phys. Chem. Lett. 2022, 13, 2976-85.
13. Niu, W.; Zhang, Y.; Gan, Y.; et al. Giant tunability of the two-dimensional electron gas at the interface of γ-Al2O3/SrTiO3γ-Al2O3/SrTiO3. Nano. Lett. 2017, 17, 6878-85.
14. Hu, L.; Luo, Y.; Fang, Y.; et al. High thermoelectric performance through crystal symmetry enhancement in triply doped diamondoid compound Cu2SnSe3. Adv. Energy. Mater. 2021, 11, 2100661.
15. Hu, L.; Fang, Y. W.; Qin, F.; et al. High thermoelectric performance enabled by convergence of nested conduction bands in Pb7Bi4Se13 with low thermal conductivity. Nat. Commun. 2021, 12, 105.
16. Zheng, D.; Fang, Y. W.; Zhang, S.; et al. Berry phase engineering in SrRuO3/SrIrO3/SrTiO3 superlattices induced by band structure reconstruction. ACS. Nano. 2021, 15, 5086-95.
17. Stormer, H. L. Nobel lecture: The fractional quantum hall effect. Rev. Mod. Phys. 1999, 71, 875-900.
19. Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A. H.; Ong, N. P. Anomalous hall effect. Rev. Mod. Phys. 2010, 82, 1539-92.
20. Sinova, J.; Valenzuela, S. O.; Wunderlich, J.; Back, C.; Jungwirth, T. Spin hall effects. Rev. Mod. Phys. 2015, 87, 1213-60.
21. Sodemann, I.; Fu, L. Quantum nonlinear hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 2015, 115, 216806.
22. Kang, K.; Li, T.; Sohn, E.; Shan, J.; Mak, R. F. Nonlinear anomalous hall effect in few-layer WTe2. Nat. Mater. 2019, 18, 324-8.
23. Ma, Q.; Xu, S. Y.; Shen, H.; et al. Observation of the nonlinear hall effect under time-reversal-symmetric conditions. Nature 2019, 565, 337-42.
24. Tiwari, A.; Chen, F.; Zhong, S.; et al. Giant c-axis nonlinear anomalous hall effect in Td-MoTe2 and WTe2. Nat. Commun. 2021, 12, 2049.
25. Kumar, D.; Hsu, C. H.; Sharma, R.; et al. Room-temperature nonlinear hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 2021, 16, 421-5.
26. Wang, N.; Kaplan, D.; Zhang, Z.; et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 2023, 621, 487-92.
27. Gao, A.; Liu, Y. F.; Qiu, J. X.; et al. Quantum metric nonlinear hall effect in a topological antiferromagnetic heterostructure. Science 2023, 381, 181-6.
28. Rostami, H.; Juricic, V. Probing quantum criticality using nonlinear hall effect in a metallic Dirac system. Phys. Rev. Res. 2020, 2, 013069.
29. He, W. Y.; Law, K.T. Nonlinear hall effect in insulators. arxiv2024, 2411.07456. Available from: https://arxiv.org/abs/2411.07456 [Last accessed on 11 Apr 2024].
30. Lee, J. E.; Wang, A.; Chen, S.; et al. Spin-orbit-splitting-driven nonlinear hall effect in NbIrTe4. Nat. Commun. 2024, 15, 3971.
31. Duan, S.; Qin, F.; Chen, P.; et al. Berry curvature dipole generation and helicity-to-spin conversion at symmetry-mismatched heterointerfaces. Nat. Nanotechnol. 2023, 18, 867-74.
32. He, Z.; Weng, H. Giant nonlinear hall effect in twisted bilayer WTe2. NPJ. Quantum. Mater. 2021, 6, 101.
33. Hu, J. X.; Zhang, C. P.; Xie, Y. M.; Law, K. Nonlinear hall effects in strained twisted bilayer WSe2. Commun. Phys. 2022, 5, 255.
34. Gao, A.; Liu, Y. F.; Hu, C.; et al. Layer hall effect in a 2D topological axion antiferromagnet. Nature 2021, 595, 521-5.
36. Klitzing, K.; Dorda, G.; Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 1980, 45, 494-7.
37. Yasuda, K.; Wakatsuki, R.; Morimoto, T.; et al. Geometric hall effects in topological insulator heterostructures. Nat. Phys. 2016, 12, 555-9.
38. Gao, Y.; Yang, S. A.; Niu, Q. Field induced positional shift of Bloch electrons and its dynamical implications. Phys. Rev. Lett. 2014, 112, 166601.
39. Wang, C.; Gao, Y.; Xiao, D. Intrinsic nonlinear hall effect in antiferromagnetic tetragonal CuMnAs. Phys. Rev. Lett. 2021, 127, 277201.
40. Du, Z.; Wang, C.; Li, S.; et al. Disorder-induced nonlinear hall effect with time-reversal symmetry. Nat. Commun. 2019, 10, 3047.
41. Du, Z.; Wang, C.; Sun, H. P.; et al. Quantum theory of the nonlinear hall effect. Nat. Commun. 2021, 12, 5038.
42. Tokura, Y.; Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 2018, 9, 3740.
43. Provost, J.; Vallee, G. Riemannian structure on manifolds of quantum states. Commun. Math. Phys. 1980, 76, 289-301.
44. Tsirkin, S.; Souza, I. On the separation of hall and ohmic nonlinear responses. SciPost. Phys. Core. 2022, 5, 039.
45. Holder, T.; Kaplan, D.; Yan, B. Consequences of time-reversal-symmetry breaking in the light-matter interaction: berry curvature, quantum metric, and diabatic motion. Phys. Rev. Res. 2020, 2, 033100.
46. Watanabe, H.; Yanase, Y. Nonlinear electric transport in odd-parity magnetic multipole systems: application to Mn-based compounds. Phys. Rev. Res. 2020, 2, 043081.
47. Isobe, H.; Xu, S. Y.; Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 2020, 6, eaay2497.
48. Liu, H.; Zhao, J.; Huang, Y. X.; et al. Intrinsic second-order anomalous hall effect and its application in compensated antiferromagnets. Phys. Rev. Lett. 2021, 127, 277202.
49. Han, J.; Uchimura, T.; Araki, Y.; et al. Room-temperature flexible manipulation of the quantum-metric structure in a topological chiral antiferromagnet. Nat. Phys. 2024, 20, 1110-7.
50. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A. 1984, 392, 45-57.
51. Xiao, D.; Chang, M. C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959-2007.
52. Bohm, A.; Mostafazadeh, A.; Koizumi, H.; Niu, Q.; Zwanziger, J. The Geometric phase in quantum systems: foundations, mathematical concepts, and applications in molecular and condensed matter physics. Springer Science & Business Media; 2013.
54. Low, T.; Jiang, Y.; Guinea, F. Topological currents in black phosphorus with broken inversion symmetry. Phys. Rev. B. 2015, 92, 235447.
55. Joseph, N. B.; Bandyopadhyay, A.; Narayan, A. Chirality-Tunable nonlinear hall effect. Chem. Mater. 2024, 36, 8602-12.
56. Zhu, H.; Yakobson, B. L. Creating chirality in the nearly two dimensions. Nat. Mater. 2024, 23, 316-22.
57. Peshchentseva, N.; Felser, C.; Zhang, Y. Quantized nonlinear hall effect from chiral monopole. Phys. Rev. B. 2024, 110, 155143.
58. Li, H.; Zhang, C.; Zhou, C.; et al. Quantum geometry quadrupole-induced third-order nonlinear transport in antiferromagnetic topological insulator MnBi2Te4. Nat. Commun. 2024, 15, 7779.
59. Sankar, S.; Liu, R.; Zhang, C. P.; et al. Experimental evidence for a berry curvature quadrupole in an antiferromagnet. Phys. Rev. X. 2024, 14, 021046.
60. Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley hall effect in MoS2 transistors. Science 2014, 344, 1489-92.
61. Xu, C.; Moore, J. E. Stability of the quantum spin hall effect: effects of interactions, disorder, and Z2 topology. Phys. Rev. B. 2006, 73, 045322.
62. Berger, L. Side-jump mechanism for the hall effect of ferromagnets. Phys. Rev. B. 1970, 2, 4559-66.
65. Cheng, B.; Gao, Y.; Zheng, Z.; et al. Giant nonlinear hall and wireless rectification effects at room temperature in the elemental semiconductor tellurium. Nat. Commun. 2024, 15, 5513.
66. Lu, X. F.; Zhang, C. P.; Wang, N.; et al. Nonlinear transport and radio frequency rectification in BiTeBr at room temperature. Nat. Commun. 2024, 15, 245.
67. He, P.; Isobe, H.; Zhu, D.; et al. Quantum frequency doubling in the topological insulator Bi2Se3. Nat. Commun. 2021, 12, 698.
68. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; et al. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-9.
69. Yang, H.; Valenzuela, S. O.; Chshiev, M.; et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature 2022, 606, 663-73.
70. Li, X.; Tao, L.; Chen, Z.; et al. Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 2017, 4, 021306.
71. Chia, X.; Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909-21.
72. Zhang, Z.; Wang, N.; Cao, N.; et al. Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4. Nat. Commun. 2022, 13, 6191.
73. Yasuda, K.; Morimoto, T.; Yoshimi, R.; et al. Large non-reciprocal charge transport mediated by quantum anomalous hall edge states. Nat. Nanotechnol. 2020, 15, 831-5.
74. Dean, C. R.; Wang, L.; Maher, P.; et al. Hofstadter's butterfly and the fractal quantum hall effect in moire superlattices. Nature 2013, 497, 598-602.
75. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
76. Tong, Q.; Yu, H.; Zhu, Q.; et al. Topological mosaics in moire superlattices of van der Waals heterobilayers. Nat. Phys. 2017, 13, 356-62.
77. Finney, N. R.; Yankowitz, M.; Muraleetharan, L.; et al. Tunable crystal symmetry in graphene-boron nitride heterostructures with coexisting moire superlattices. Nat. Nanotechnol. 2019, 14, 1029-34.
78. Meng, K.; Li, Z.; Gao, Z.; et al. Gate-tunable berry curvature in van der Waals itinerant ferromagnetic CrTe. InfoMat 2024, 6, e12524.
79. Tian, Y.; Ye, L.; Jin, X. Proper scaling of the anomalous hall effect. Phys. Rev. Lett. 2009, 103, 087206.
80. Liu, E.; Sun, Y.; Kumar, N.; et al. Giant anomalous hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 2018, 14, 1125-31.
81. Deng, Y.; Yu, Y.; Shi, M. Z.; et al. Quantum anomalous hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 367, 895-900.
82. Gao, A.; Chen, S. W.; Ghosh, B.; et al. An antiferromagnetic diode effect in even-layered MnBi2Te4. Nat. Electron. 2024, 7, 751-9.
83. He, P.; Koon, G. K. W.; Isobe, H.; et al. Graphene moire superlattices with giant quantum nonlinearity of chiral Bloch electrons. Nat. Nanotechnol. 2022, 17, 378-83.
84. Zhang, K. X.; Ju, H.; Kim, H.; et al. Broken inversion symmetry in van der Waals topological ferromagnetic metal iron germanium telluride. Adv. Mater. 2024, 36, 2312824.
85. Wang, S.; Li, X.; Zhang, H.; et al. Nonlinear Hall effect and scaling law in Sb-doped topological insulator MnBi4Te7. Appl. Phys. Lett. 2024, 124, 153102.
86. Lesne, E.; Saglam, Y. G.; Battilomo, R.; et al. Designing spin and orbital sources of Berry curvature at oxide interfaces. Nat. Mater. 2023, 22, 576-82.
87. Trama, M.; Cataudella, V.; Perroni, C.; Romeo, F.; Citro, R. Gate tunable anomalous hall effect: berry curvature probe at oxides interfaces. Phys. Rev. B. 2022, 106, 075430.
88. Groenendijk, D. J.; Autieri, C.; van Thiel, T. C.; et al. Berry phase engineering at oxide interfaces. Phys. Rev. Res. 2020, 2, 023404.
89. Yankowitz, M.; Ma, Q.; Jarillo-Herrero, P.; LeRoy, B. J. van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 2019, 1, 112-25.
90. Li, Z.; Huang, J.; Zhou, L.; et al. An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces. Nat. Commun. 2023, 14, 5568.
91. Wang, L.; Meric, I.; Huang, P.; et al. One-dimensional electrical contact to a two-dimensional material. Science 2013, 342, 614-7.
92. Kinoshita, K.; Moriya, R.; Onodera, M.; et al. Dry release transfer of graphene and few-layer h-BN by utilizing thermoplasticity of polypropylene carbonate. npj. 2D. Mater. Appl. 2019, 3, 22.
93. Huang, M.; Wu, Z.; Zhang, X.; et al. Intrinsic nonlinear Hall effect and gate-switchable Berry curvature sliding in twisted bilayer graphene. Phys. Rev. Lett. 2023, 131, 066301.
94. Kim, K.; Yankowitz, M.; Fallahazad, B.; et al. van der Waals heterostructures with high accuracy rotational alignment. Nano. Lett. 2016, 16, 1989-95.
95. Saito, Y.; Ge, J.; Watanabe, K.; Taniguchi, T.; Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 2020, 16, 926-30.
96. Tian, H.; Gao, X.; Zhang, Y.; et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 2023, 614, 440-4.
97. Park, J. M.; Cao, Y.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 2021, 590, 249-55.
98. McGilly, L. J.; Kerelsky, A.; Finney, N. R.; et al. Visualization of moire superlattices. Nat. Nanotechnol. 2020, 15, 580-4.
99. Qiu, D.; Gong, C.; Wang, S.; et al. Recent advances in 2D superconductors. Adv. Mater. 2021, 33, 2006124.
100. Balents, L.; Dean, C. R.; Efetov, D. K.; Young, A. F. Superconductivity and strong correlations in moire flat bands. Nat. Phys. 2020, 16, 725-33.
102. Xu, Y.; Liu, S.; Rhodes, D. A.; et al. Correlated insulating states at fractional fillings of moire superlattices. Nature 2020, 587, 211-8.
103. Huang, X.; Wang, T.; Miao, S.; et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moire lattice. Nat. Phys. 2021, 17, 715-9.
104. Andrei, E. Y.; Efetov, D. K.; Jarillo-Herrero, P.; et al. The marvels of moire materials. Nat. Rev. Mater. 2021, 6, 201-6.
105. Ma, T.; Chen, H.; Yananosc, K.; et al. Growth of bilayer MoTe2 single crystals with strong non-linear Hall effect. Nat. Commun. 2022, 13, 5465.
106. Min, L.; Tan, H.; Xie, Z.; et al. Strong room-temperature bulk nonlinear hall effect in a spin-valley locked Dirac material. Nat. Commun. 2023, 14, 364.
107. Suarez-Rodriguez, M.; Martin-Garcia, B.; Skowronski, W.; et al. Odd nonlinear conductivity under spatial inversion in chiral tellurium. Phys. Rev. Lett. 2021, 132, 046303.
108. Makushko, P.; Kovalev, S.; Zabila, Y.; et al. A tunable room-temperature nonlinear Hall effect in elemental bismuth thin films. Nat. Electron. 2024, 7, 207-15.
109. Wang, N.; You, J. Y.; Wang, A.; et al. Non-centrosymmetric topological phase probed by non-linear Hall effect. Natl. Sci. Rev. 2024, 11, nwa4103.
110. Qin, M. S.; Zhu, P. F.; Ye, X. G.; et al. Strain tunable Berry curvature dipole, orbital magnetization and nonlinear Hall effect in WSe2 monolayer. Chin. Phys. Lett. 2021, 38, 017301.
111. Huang, M.; Wu, Z.; Hu, J.; et al. Giant nonlinear hall effect in twisted bilayer WSe2. Natl. Sci. Rev. 2023, 10, nwac232.
112. Duan, J.; Jian, Y.; Gao, Y.; et al. Giant second-order nonlinear hall effect in twisted bilayer graphene. Phys. Rev. Lett. 2022, 129, 186801.
113. Sinha, S.; Adak, P. C.; Chakraborty, A.; et al. Berry curvature dipole senses topological transition in a moire superlattice. Nat. Phys. 2022, 18, 765-70.
114. Ye, X. G.; Zhu, P. F.; Xu, W. Z.; et al. Orbital polarization and third-order anomalous Hall effect in WTe2. Phys. Rev. B. 2022, 106, 045414.
115. Lai, S.; Liu, H.; Zhang, Z.; et al. Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor. Nat. Nanotechnol. 2021, 16, 869-73.
116. Wang, C.; Xiao, R. C.; Liu, H.; et al. Room-temperature third-order nonlinear Hall effect in Weyl semimetal TaIrTe4. Natl. Sci. Rev. 2022, 9, nwac020.
117. He, P.; Isobe, H.; Koon, G. K. W.; et al. Third-order nonlinear hall effect in a quantum Hall system. Nat. Nanotechnol. 2024, 19, 1460-5.
118. Chen, Z. H.; Liao, X.; Dong, J. W.; et al. Charge density wave modulated third-order nonlinear Hall effect in 1 T-VSe2 nanosheets. Phys. Rev. B. 2024, 110, 235135.
119. Li, S.; Wang, X.; Yang, Z.; et al. Giant third-order nonlinear Hall effect in misfit layer compound (SnS)1.17(NbS2)3. ACS. Appl. Mater. Interfaces. 2024, 16, 9.
120. Hamamoto, K.; Ezawa, M.; Kim, K. W.; Morimoto, T.; Nagaosa, N. Nonlinear spin current generation in noncentrosymmetric spin-orbit coupled systems. Phys. Rev. B. 2017, 95, 224430.
121. Araki, Y. Strain-induced nonlinear spin hall effect in topological Dirac semimetal. Sci. Rep. 2018, 8, 15236.
122. Zeng, C.; Nandy, S.; Taraphder, A.; Tewari, S. Nonlinear nernst effect in bilayer WTe2. Phys. Rev. B. 2019, 100, 245102.
123. Zeng, C.; Nandy, S.; Tewari, S. Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime. Phys. Rev. Res. 2020, 2, 032066.
124. Nakai, R.; Nagaosa, N. Nonreciprocal thermal and thermoelectric transport of electrons in noncentrosymmetric crystals. Phys. Rev. B. 2019, 99, 115201.
125. Yu, X. Q.; Zhu, Z. G.; You, J. S.; Low, T.; Su, G. Topological nonlinear anomalous Nernst effect in strained transition metal dichalcogenides. Phys. Rev. B. 2019, 99, 201410.
126. Kumar, N.; Guin, S. N.; Felser, C.; Shekhar, C. Planar hall effect in the Weyl semimetal GdPtBi. Phys. Rev. B. 2018, 98, 041103.
128. Tang, H.; Kawakami, R.; Awschalom, D.; Roukes, M. Giant planar Hall effect in epitaxial (Ga, Mn) as devices. Phys. Rev. Lett. 2003, 90, 107201.
129. He, P.; Zhang, S. S. L.; Zhu, D.; et al. Nonlinear planar Hall effect. Phys. Rev. Lett. 2019, 123, 016801.
130. Rao, W.; Zhou, Y. L.; Wu, Y. J.; Duan, H. J.; Deng, M. X.; et al. Theory for linear and nonlinear planar hall effect in topological insulator thin films. Phys. Rev. B. 2021, 103, 155415.
131. Xiao, J.; Wang, Y.; Wang, H.; et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 2020, 16, 1028-34.
132. Shao, D. F.; Zhang, S. H.; Gurung, G.; Yang, W.; Tsymbal, E. Y. Nonlinear anomalous hall effect for neel vector detection. Phys. Rev. Lett. 2020, 124, 067203.
133. Xiao, R. C.; Shao, D. F.; Zhang, Z. Q.; Jiang, H. Two-dimensional metals for piezoelectriclike devices based on Berry-curvature dipole. Phys. Rev. Appl. 2020, 13, 044014.
134. Zhang, Y.; Fu, L. Terahertz detection based on nonlinear hall effect without magnetic field. Proc. Natl. Acad. Sci. USA. 2021, 118, e2100736118.
135. Suarez-Rodriguez, M.; Martin-Garcia, B.; Skowronski, W.; et al. Microscale chiral rectennas for energy harvesting. Adv. Mater. 2024, 2400729.
136. Muhammad, S.; Tiang, J. J.; Wong, S. K.; et al. Harvesting systems for RF energy: trends, challenges, techniques, and tradeoffs. Electronics 2022, 11, 959.
137. Suarez-Rodriguez, M.; Juan, F. D.; Souza, I.; et al. Non-linear transport in non-centrosymmetric systems: from fundamentals to applications. arXiv2024, 2412.05253. Available from: https://arxiv.org/abs/2412.05253 [Last accessed on 11 Apr 2024].
138. Qin, F.; Shen, R.; Lee, C. H. Light-enhanced nonlinear hall effect. Commun. Phys. 2024, 7, 368.
139. Qin, F.; Shen, R.; Lee, C. H. Nonlinear Hall effects with an exceptional ring. arXiv2024, 2411.06509. Available from: http://dx.doi.org/10.48550/arXiv.2411.06509 [Last accessed on 11 Apr 2024].