REFERENCES
1. Gusain, R.; Gupta, K.; Joshi, P.; Khatri, O. P. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Adv. Colloid. Interface. Sci. 2019, 272, 102009.
2. Mei, J.; Liao, T.; Kou, L.; Sun, Z. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv. Mater. 2017, 29, 1700176.
3. Zhu, Y.; Peng, L.; Fang, Z.; Yan, C.; Zhang, X.; Yu, G. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 2018, 30, e1706347.
4. Garland, B. M.; Fairley, N.; Strandwitz, N. C.; Thorpe, R.; Bargiela, P.; Baltrusaitis, J. A study of in situ reduction of MoO3 to MoO2 by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2022, 598, 153827.
5. de Castro, I. A.; Datta, R. S.; Ou, J. Z.; et al. Molybdenum oxides - from fundamentals to functionality. Adv. Mater. 2017, 29, 1701619.
6. Zou, B.; Wang, X.; Zhou, Y.; et al. Optical effect modulation in polarized raman spectroscopy of transparent layered α-MoO3. Small 2023, 19, e2206932.
7. Ye, M.; Qiang, B.; Zhu, S.; et al. Nano-optical engineering of anisotropic phonon resonances in a hyperbolic α-MoO3 metamaterial. Adv. Opt. Mater. 2022, 10, 2102096.
8. Tao, S.; Hou, T.; Zeng, Y.; et al. Anisotropic Fermat’s principle for controlling hyperbolic van der Waals polaritons. Photon. Res. 2022, 10, B14.
9. Wang, Y.; Guo, X.; You, S.; et al. Giant quartic-phonon decay in PVD-grown α-MoO3 flakes. Nano. Res. 2023, 16, 1115-22.
10. Zheng, M.; Liu, P.; Yan, P.; et al. Heterogeneous CNF/MoO3 nanofluidic membranes with tunable surface plasmon resonances for solar-osmotic energy conversion. Mater. Horiz. 2024, 11, 3375-85.
11. Kong, W.; Liu, W.; Zheng, X.; Xu, Q. Sunlight driven reversible and tunable plasmon resonance in 2D amorphous molybdenum oxide. Adv. Opt. Mater. 2024, 12, 2301821.
12. Hu, G.; Ou, Q.; Si, G.; et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 2020, 582, 209-13.
13. Wang, S. Y.; Li, D. K.; Zha, M. J.; Yan, X. Q.; Liu, Z.; Tian, J. Tunable optical activity in twisted anisotropic two-dimensional materials. ACS. Nano. 2023, 17, 16230-8.
14. Duan, J.; Álvarez-Pérez, G.; Lanza, C.; et al. Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO3 trilayers. Nat. Mater. 2023, 22, 867-72.
15. Liu, H.; Yu, K.; Zhang, K.; Ai, Q.; Xie, M.; Wu, X. Effect of substrate on the near-field radiative heat transfer between α-MoO3 films. Int. J. Heat. Mass. Transf. 2023, 210, 124206.
16. Li, L.; Wu, X.; Liu, H.; Shi, K.; Liu, Y.; Yu, K. Near-field radiative modulator based on α-MoO3 films. Int. J. Heat. Mass. Transfer. 2023, 216, 124603.
17. Ren, H.; Sun, S.; Cui, J.; Li, X. Synthesis, functional modifications, and diversified applications of molybdenum oxides micro-/nanocrystals: a review. Cryst. Growth. Des. 2018, 18, 6326-69.
18. Scanlon, D. O.; Watson, G. W.; Payne, D. J.; Atkinson, G. R.; Egdell, R. G.; Law, D. S. L. Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J. Phys. Chem. C. 2010, 114, 4636-45.
19. Huang, C.; Zhang, W.; Zheng, W. The debut and spreading the landscape for excellent vacancies-promoted electrochemical energy storage of nano-architected molybdenum oxides. Mater. Today. Energy. 2022, 30, 101154.
20. Xie, H.; Li, Z.; Cheng, L.; et al. Recent advances in the fabrication of 2D metal oxides. iScience 2022, 25, 103598.
21. Kuriakose, S.; Kayani, A. B. A.; Monshipouri, M.; et al. Customized two-dimensional nanostructured MoO3 inks for spectrally selective UV chromic patches. ACS. Appl. Nano. Mater. 2022, 5, 18553-60.
22. Wei, Z.; Gasparyan, M.; Liu, L.; et al. Microwave-exfoliated 2D oligo-layer MoO3-x nanosheets with outstanding molecular adsorptivity and room-temperature gas sensitivity on ppb level. Chem. Eng. J. 2023, 454, 140076.
23. Meng, X.; Yu, J.; Shi, W.; et al. SERS detection of trace carcinogenic aromatic amines based on amorphous MoO3 monolayers. Angew. Chem. Int. Ed. 2024, 63, e202407597.
24. Wu, T.; Zhang, F.; Wang, J.; Liu, X.; Tian, Y.; Chu, K. Electrochemical reduction of nitrite to ammonia on amorphous MoO3 nanosheets. Dalton. Trans. 2024, 53, 877-81.
25. Ou, Y.; Zhou, Y.; Guo, Y.; et al. 2D/2D Dy2O3 nanosheet/MoO3 nanoflake heterostructures for humidity-independent and sensitive ammonia detection. ACS. Sens. 2023, 8, 4253-63.
26. Pradeep Kumar, P.; Singh, V. Enhanced dual gas sensing performance of MoS2/MoO3 nanostructures for NH3 and NO2 detection. Ceram. Int. 2024, 50, 21978-88.
27. Wang, Z. Y.; Yuan, B.; Zhang, F. G.; et al. Photocatalytic nitrogen fixation coupled with the generation of value-added chemicals from N2 and cellulose over MoO3 nanosheets. Inorg. Chem. 2024, 63, 9715-9.
28. Ding, W.; Li, X.; Su, S.; et al. In-situ construction of Schottky junctions with synergistic interaction of oxygen vacancies in Mo@MoO3 nanosheets for efficient N2 photoreduction. Appl. Surf. Sci. 2023, 633, 157594.
29. Xiao, R.; Wang, T.; Feng, S.; et al. Porous MoO3 nanosheets for conductometric gas sensors to detect diisopropylamine. Sens. Actuators. B. Chem. 2023, 382, 133472.
30. Madani, S.; Tesfamichael, T.; Motta, N.; Wang, H. Simulation of perovskite solar cells using molybdenum oxide thin films as interfacial layer for enhancing device performance. Sustain. Mater. Technol. 2022, 32, e00426.
31. Du, Y.; Li, G.; Peterson, E. W.; et al. Iso-oriented monolayer α-MoO3(010) films epitaxially grown on SrTiO3(001). Nanoscale 2016, 8, 3119-24.
32. Bisht, P.; Kumar, A.; Jensen, I. T.; Ahmad, M.; Belle, B. D.; Mehta, B. Enhanced gas sensing response for 2D α-MoO3 layers: thickness-dependent changes in defect concentration, surface oxygen adsorption, and metal-metal oxide contact. Sens. Actuators. B. Chem. 2021, 341, 129953.
33. Zhao, X.; Chu, Q.; Guo, S.; et al. Controllable hot electron transfer in the Ag/MoO3 layer by layer system: thickness-dependent MoO3 layer. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2023, 286, 121995.
34. Rahman, M.; Chetri, S.; Pemmaraju, D. B.; Murty, U. S.; Deshpande, U. P.; Kakati, M. An expanded plasma jet assisted technique for very high-rate synthesis of 2D α-MoO3 nanomaterials, with surface oxygen vacancies and robust induced ferromagnetism. Vacuum 2024, 225, 113237.
35. Hong, Y.; Lan, S.; Pan, B.; et al. Thinner 2D α-MoO3 makes setting up memristors easier. J. Materiomics. 2024, 10, 1279-89.
36. Deng, L.; Zhang, Q.; Li, W.; et al. KCl acts as a flux to assist the growth of sub-millimeter-scale metallic 2D non-layered molybdenum dioxide. Rare. Met. 2025, 44, 404-16.
37. Xu, H.; Karbalaei, A. M.; Wang, S.; et al. Tunability of near infrared opto-synaptic properties of thin MoO3 films fabricated by atomic layer deposition. Appl. Surf. Sci. 2022, 593, 153399.
38. Kim, Y. W.; Park, J.; Park, J. H.; et al. Self-isolating electrode deposition process using the area-selective MoO2 and MoO3 atomic layer deposition technique. Appl. Mater. Today. 2024, 37, 102160.
39. Lee, D. J.; Kumar, G. M.; Kim, Y.; et al. Hybrid CsPbBr3 quantum dots decorated two dimensional MoO3 nanosheets photodetectors with enhanced performance. J. Mater. Res. Technol. 2022, 18, 4946-55.
40. Kundu, M.; Mondal, D.; Mondal, I.; et al. A rational preparation strategy of phase tuned MoO3 nanostructures for high-performance all-solid asymmetric supercapacitor. J. Energy. Chem. 2023, 87, 192-206.
41. Zhu, Y.; Tan, Y.; Li, H. MoO3 nanoplates preparation via self-sacrifice C3N4 for supercapacitors in an acid electrolyte. J. Energy. Storage. 2023, 60, 106657.
42. Alam, M. H.; Chowdhury, S.; Roy, A.; et al. Wafer-scalable single-layer amorphous molybdenum trioxide. ACS. Nano. 2022, 16, 3756-67.
43. Liu, B.; Wu, S.; Lv, Y.; et al. Facile synthesis of oxygen-deficient MoO3-x nanosheets by light radiation for fast electrochromic supercapacitors. Electrochim. Acta. 2023, 464, 142894.
44. Qi, S.; Liu, G.; Zhang, K.; Chen, J.; Zhao, Y.; Lou, Y. Colloidal synthesis of plasmonic ultrathin transition-metal oxide nanosheets. ACS. Sustain. Chem. Eng. 2022, 10, 9565-72.
45. Shkir, M.; Ben, G. T. A.; Alkallas, F. H.; Alfaify, S. High performance of the rare earth (Er, Gd & Pr) doped MoO3 thin films for advanced applications towards ammonia gas sensing. J. Mater. Res. Technol. 2022, 20, 4556-65.
46. Li, T.; Zhu, L.; Lu, L.; et al. Highly sensitive optical fiber plasmonic sensors by integrating hydrogen doped molybdenum oxide. IEEE. Sensors. J. 2022, 22, 7734-42.
47. Li, W.; Xu, H.; Wang, A.; et al. Insitu controllable synthesis of MoO3 nanoflakes and its temperature-dependent dual selectivity for detection of ethanol and isopropanol. Sens. Actuators. B. Chem. 2024, 408, 135548.
48. Kriegel, I.; Jiang, C.; Rodríguez-Fernández, J.; et al. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J. Am. Chem. Soc. 2012, 134, 1583-90.
49. Li, C.; Jang, H.; Kim, M. G.; Hou, L.; Liu, X.; Cho, J. Ru-incorporated oxygen-vacancy-enriched MoO2 electrocatalysts for hydrogen evolution reaction. Appl. Catal. B. Environ. 2022, 307, 121204.
50. Luo, Z.; Miao, R.; Huan, T. D.; et al. Mesoporous MoO3-x material as an efficient electrocatalyst for hydrogen evolution reactions. Adv. Energy. Mater. 2016, 6, 1600528.
51. Cheng, H.; Kamegawa, T.; Mori, K.; Yamashita, H. Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light. Angew. Chem. Int. Ed. 2014, 53, 2910-4.
52. Sun, Y.; Cui, J.; Wang, C.; Fu, S.; Sun, S.; Wang, X. Controllable synthesis of defect-enriched MoO3 for enhanced H2S sensing through hydrothermal methods: experiments and DFT calculations. J. Alloys. Compd. 2023, 968, 172035.
53. Sun, J.; Qin, S.; Zhao, Z.; Zhang, Z.; Meng, X. Rapid carbothermal shocking fabrication of iron-incorporated molybdenum oxide with heterogeneous spin states for enhanced overall water/seawater splitting. Mater. Horiz. 2024, 11, 1199-211.
54. Xu, L.; Zhou, W.; Chao, S.; et al. Advanced oxygen-vacancy Ce-doped MoO3 ultrathin nanoflakes anode materials used as asymmetric supercapacitors with ultrahigh energy density. Adv. Energy. Mater. 2022, 12, 2200101.
55. Lin, Y.; Zhang, Y.; Magomedov, A.; et al. 18.73% efficient and stable inverted organic photovoltaics featuring a hybrid hole-extraction layer. Mater. Horiz. 2023, 10, 1292-300.
56. Wang, H.; Guan, N.; Feng, Z.; Xiang, W.; Zhao, H.; Zhang, X. Constructing defect engineered 2D/2D MoO3/g-C3N4 Z-scheme heterojunction for enhanced photocatalytic activity. J. Alloys. Compd. 2022, 926, 166964.
57. Peng, J.; Shen, J.; Yu, X.; Tang, H.; Zulfiqar; Liu, Q. Construction of LSPR-enhanced 0D/2D CdS/MoO3-x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 87-96.
58. Wei, Y.; Zhang, Q.; Zhou, Y.; et al. Noble-metal-free plasmonic MoO3-x-based S-scheme heterojunction for photocatalytic dehydrogenation of benzyl alcohol to storable H2 fuel and benzaldehyde. Chin. J. Catal. 2022, 43, 2665-77.
59. Wang, H.; Liu, Q.; Xu, M.; et al. Dual-plasma enhanced 2D/2D/2D g-C3N4/Pd/MoO3-x S-scheme heterojunction for high-selectivity photocatalytic CO2 reduction. Appl. Surf. Sci. 2023, 640, 158420.
60. Yoon, A.; Kim, J. H.; Yoon, J.; Lee, Y.; Lee, Z. van der Waals epitaxial formation of atomic layered α-MoO3 on MoS2 by oxidation. ACS. Appl. Mater. Interfaces. 2020, 12, 22029-36.
61. Krishnan, A.; Kamaraj, M.; Nayak, P. K.; Ramaprabhu, S. Surface functionalized 2D MoO3-hBN heterostructure as friction modifiers in boundary lubrication regime. Surf. Interfaces. 2024, 51, 104527.
62. Wang, Q.; Tian, H.; Zhang, Z.; et al. Keggin-type polycationic AlO4Al12(OH)24(H2O)127+ intercalated MoO3 composites for methyl orange adsorption. Chin. Chem. Lett. 2022, 33, 2617-20.
63. Tan, Y.; He, J.; Wang, B.; Li, C. C.; Wang, T. Tuning the layer structure of molybdenum trioxide towards high-performance aqueous zinc-ion batteries. Chin. Chem. Lett. 2023, 34, 107410.
64. Gao, Z.; Tan, R.; Pan, Z.; et al. Boosting ammonia synthesis over MoO2 by Li intercalation. Green. Chem. 2022, 24, 7584-91.
65. Reed, B. W.; Chen, E.; Koski, K. J. Tunable chemochromism and elastic properties in intercalated MoO3: Au-, Cr-, Fe-, Ge-, Mn-, and Ni-MoO3. ACS. Nano. 2024, 18, 12845-52.
66. Hu, T.; Xue, B.; Meng, F.; et al. Preparation of 2D Polyaniline/MoO3-x superlattice nanosheets via intercalation-induced morphological transformation for efficient chemodynamic therapy. Adv. Healthc. Mater. 2023, 12, e2202911.
67. Xie, S.; Cheng, X.; Hu, C.; et al. Pressure effect on structure transition and optical anisotropy in MoO3. Appl. Phys. Lett. 2022, 120, 131901.
68. Wang, S.; Wang, Y.; Liu, T.; Wang, L.; Huang, Y.; Lu, Y. Irreversible pressure effect on phase transitions and bandgap narrowing of layered MoO3. Mater. Today. Adv. 2024, 21, 100476.
69. Chia, X.; Pumera, M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal. 2018, 1, 909-21.
70. Wen, K.; Huang, L.; Qu, L.; et al. g-C3N4/MoO3 composite with optimized crystal face: a synergistic adsorption-catalysis for boosting cathode performance of lithium-sulfur batteries. J. Colloid. Interface. Sci. 2023, 649, 890-9.
71. Hsu, F. H.; Hsu, S. Y.; Subramani, R.; et al. The ion behavior and storage mechanism of 2D MoO3 layer structure in an air-stable hydrated eutectic electrolyte for aluminum-ion energy storage. J. Energy. Storage. 2024, 84, 110693.
72. Hao, L.; Huang, H.; Zhang, Y.; Ma, T. Oxygen vacant semiconductor photocatalysts. Adv. Funct. Mater. 2021, 31, 2100919.
73. Ashraf, G. A.; Rasool, R. T.; Rasool, R. U.; et al. Photocatalytic stimulation of peroxymonosulfate by novel MoO3@ZrO2 with Z-scheme heterojunction for diclofenac sodium degradation. J. Water. Process. Eng. 2023, 51, 103435.
74. Wang, J.; Tao, J.; Dong, X.; et al. Hydrothermal oxygen uncoupling of high-concentration biogas slurry over Cu-α-Fe2O3·α-MoO3 catalyst. J. Environ. Manag. 2022, 320, 115827.
75. Zhao, X.; Zhou, W.; Xu, L.; et al. Oxygen-vacancy Ce-MoO3 nanosheets loaded Pt nanoparticles for super-efficient photoelectrocatalytic oxidation of methanol. Appl. Surf. Sci. 2024, 655, 159576.
76. Zhu, Y.; Lin, Q.; Zhong, Y.; Tahini, H. A.; Shao, Z.; Wang, H. Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy. Environ. Sci. 2020, 13, 3361-92.
77. Wang, X.; Liu, G.; Zhang, D.; et al. N-doped carbon sheets supported P-Fe3O4-MoO2 for freshwater and seawater electrolysis. J. Colloid. Interface. Sci. 2023, 652, 1217-27.
78. Li, J.; Cheng, Y.; Zhang, J.; Fu, J.; Yan, W.; Xu, Q. Confining Pd nanoparticles and atomically dispersed Pd into defective MoO3 nanosheet for enhancing electro- and photocatalytic hydrogen evolution performances. ACS. Appl. Mater. Interfaces. 2019, 11, 27798-804.
79. Deka, H.; Sunaniya, A. K.; Agarwal, P. Simulation studies on MoS2 (n)/a-Si:H (i)/c-Si (p)/MoO3 heterojunction solar cells using one sided short diode approximation. Solar. Energy. 2023, 263, 111943.
80. Li, J.; Kang, Q.; Wang, Y.; et al. Low oxygen content MoOx and SiOx tunnel layer based heterocontacts for efficient and stable crystalline silicon solar cells approaching 22% efficiency. Adv. Funct. Mater. 2024, 34, 2310619.
81. Suzuki, I.; Lin, Z.; Nogami, T.; et al. High open-circuit voltage in single-crystalline n -type SnS/MoO3 photovoltaics. APL. Mater. 2023, 11, 031116.
82. Wang, J.; Zheng, Z.; Zu, Y.; et al. A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control. Adv. Mater. 2021, 33, e2102787.
83. Liu, Z.; Zhang, H.; Sun, L. Enhanced performance of polymer solar cells by ultraviolet-ozone treatment of MoOx films with non-thermal annealing treatment of MoOx films. Surf. Interfaces. 2024, 51, 104701.
84. Jiang, W.; Su, M.; Zheng, Y.; Fei, T. Efficient electron transfer through interfacial water molecules across two-dimensional MoO3 for humidity sensing. ACS. Appl. Mater. Interfaces. 2024, 16, 7406-14.
85. Zhang, W.; Li, H.; Hopmann, E.; Elezzabi, A. Y. Nanostructured inorganic electrochromic materials for light applications. Nanophotonics 2020, 10, 825-50.
86. Gao, G.; Tao, X.; He, Y.; et al. Electrochromic composites films composed of MoO3 doped by tungsten atoms with remarkable response speed and color rendering efficiency via electrochemical deposition. Appl. Surf. Sci. 2023, 640, 158346.
87. Kowalczyk, D. A.; Rogala, M.; Szałowski, K.; et al. Two-dimensional crystals as a buffer layer for high work function applications: the case of monolayer MoO3. ACS. Appl. Mater. Interfaces. 2022, 14, 44506-15.
88. Yang, Z.; Guo, C.; Qin, L.; et al. Enhanced organic thin-film transistor stability by preventing MoO3 diffusion with metal/MoO3/organic multilayered interface source-drain contact. ACS. Appl. Mater. Interfaces. 2023, 15, 1704-17.
89. Shan, X.; Liu, P.; Wang, F.; et al. Dual-conductivity mechanism investigation of 2D α-MoO3-based multi-level memristor. Sci. China. Mater. 2023, 66, 4773-81.
90. Ma, Y.; Lang, J. 2D SnO/MoO3 van der Waals heterojunction with tunable electronic behavior for multifunctional applications: DFT calculations. App. Surf. Sci. 2023, 611, 155719.
91. Surnev, S.; Netzer, F. P. Tungsten and molybdenum oxide nanostructures: two-dimensional layers and nanoclusters. J. Phys. Condens. Matter. 2022, 34, 233001.
92. Petronijevic, E.; Dereshgi, S. A.; Larciprete, M. C.; Centini, M.; Sibilia, C.; Aydin, K. Extrinsic chirality and circular dichroism at visible frequencies enabled by birefringent α-MoO3 nanoscale-thick films: implications for chiro-optical control. ACS. Appl. Nano. Mater. 2022, 5, 5609-16.
93. Kundu, M.; Mondal, D.; Bose, N.; Basu, R.; Das, S. 2D MoO3/PVDF-HFP nanocomposites for flexible piezoelectric nanogenerator and wireless mechanosensor applications. ACS. Appl. Nano. Mater. 2024, 7, 1804-14.