REFERENCES

1. Scott, J. F.; Paz, A. C. A. Ferroelectric memories. Science 1989, 246, 1400-5.

2. Kang, S.; Jang, W. S.; Morozovska, A. N.; et al. Highly enhanced ferroelectricity in HfO2-based ferroelectric thin film by light ion bombardment. Science 2022, 376, 731-8.

3. Park, M. H.; Lee, Y. H.; Kim, H. J.; et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 2015, 27, 1811-31.

4. Polakowski, P.; Müller, J. Ferroelectricity in undoped hafnium oxide. Appl. Phys. Lett. 2015, 106, 232905.

5. Müller, J.; Böscke, T. S.; Müller, S.; et al. Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories. In Proceedings of the 2013 IEEE International Electron Devices Meeting; 9-11 December 2013, Washington, DC, USA.

6. Böscke, T. S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903.

7. Mikolajick, T.; Slesazeck, S.; Park, M. H.; Schroeder, U. Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS. Bull. 2018, 43, 340-6.

8. Sang, X.; Grimley, E. D.; Schenk, T.; Schroeder, U.; Lebeau, J. M. On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 2015, 106, 162905.

9. Jia, Y.; Yang, Q.; Fang, Y. W.; et al. Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions. Nat. Commun. 2024, 15, 693.

10. Hao, Y.; Chen, X.; Zhang, L.; et al. Record high room temperature resistance switching in ferroelectric-gated Mott transistors unlocked by interfacial charge engineering. Nat. Commun. 2023, 14, 8247.

11. Lee, T. Y.; Lee, K.; Lim, H. H.; et al. Ferroelectric polarization-switching dynamics and wake-up effect in Si-doped HfO2. ACS. Appl. Mater. Interfaces. 2019, 11, 3142-9.

12. Grimley, E. D.; Schenk, T.; Mikolajick, T.; Schroeder, U.; Lebeau, J. M. Atomic structure of domain and interphase boundaries in ferroelectric HfO2. Adv. Mater. Inter. 2018, 5, 1701258.

13. Batra, R.; Huan, T. D.; Jones, J. L.; Rossetti, G.; Ramprasad, R. Factors favoring ferroelectricity in hafnia: a first-principles computational study. J. Phys. Chem. C. 2017, 121, 4139-45.

14. Schroeder, U.; Park, M. H.; Mikolajick, T.; Hwang, C. S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 2022, 7, 653-69.

15. Mittmann, T.; Materano, M.; Chang, S. C.; Karpov, I.; Mikolajick, T.; Schroeder, U. Impact of Oxygen Vacancy Content in Ferroelectric HZO films on the Device Performance. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM); 12-18 December 2020, San Francisco, CA, USA.

16. He, R.; Wu, H.; Liu, S.; Liu, H.; Zhong, Z. Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies. Phys. Rev. B. 2021, 104, L180102.

17. Zhou, Y.; Zhang, Y.; Yang, Q.; et al. The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle. Comput. Mater. Sci. 2019, 167, 143-50.

18. Muñoz Ramo, D.; Shluger, A. L.; Gavartin, J. L.; Bersuker, G. Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2. Phys. Rev. Lett. 2007, 99, 155504.

19. Yan, F.; Wu, Y.; Liu, Y.; et al. Recent progress on defect-engineering in ferroelectric HfO2: the next step forward via multiscale structural optimization. Mater. Horiz. 2024, 11, 626-45.

20. Shao, M.; Liu, H.; He, R.; et al. Programmable ferroelectricity in Hf0.5Zr0.5O2 enabled by oxygen defect engineering. Nano. Lett. 2024, 24, 1231-7.

21. Lee, J.; Yang, K.; Kwon, J. Y.; et al. Role of oxygen vacancies in ferroelectric or resistive switching hafnium oxide. Nano. Converg. 2023, 10, 55.

22. Materano, M.; Mittmann, T.; Lomenzo, P. D.; et al. Influence of oxygen content on the structure and reliability of ferroelectric HfxZr1-xO2 layers. ACS. Appl. Electron. Mater. 2020, 2, 3618-26.

23. Bao, K.; Liao, J.; Yan, F.; et al. Enhanced endurance and imprint properties in Hf0.5Zr0.5O2-δ ferroelectric capacitors by tailoring the oxygen vacancy. ACS. Appl. Electron. Mater. 2023, 5, 4615-23.

24. Zheng, Y.; Zhang, Y.; Xin, T.; et al. Direct atomic-scale visualization of the 90° domain walls and their migrations in Hf0.5Zr0.5O2 ferroelectric thin films. Mater. Today. Nano. 2023, 24, 100406.

25. Bai, F.; Liao, J.; Yang, J.; et al. Mechanical-electrical-chemical coupling study on the stabilization of a hafnia-based ferroelectric phase. NPJ. Comput. Mater. 2023, 9, 1176.

26. Fan, P.; Zhang, Y. K.; Yang, Q.; et al. Origin of the intrinsic ferroelectricity of HfO2 from ab initio molecular dynamics. J. Phys. Chem. C. 2019, 123, 21743-50.

27. Dogan, M.; Gong, N.; Ma, T. P.; Ismail-Beigi, S. Causes of ferroelectricity in HfO2-based thin films: an ab initio perspective. Phys. Chem. Chem. Phys. 2019, 21, 12150-62.

28. Shiraishi, T.; Katayama, K.; Yokouchi, T.; et al. Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films. Appl. Phys. Lett. 2016, 108, 262904.

29. Bouaziz, J.; Romeo, P. R.; Baboux, N.; Vilquin, B. Huge reduction of the wake-up effect in ferroelectric HZO thin films. ACS. Appl. Electron. Mater. 2019, 1, 1740-5.

30. Luo, Q.; Cheng, Y.; Yang, J.; et al. A highly CMOS compatible hafnia-based ferroelectric diode. Nat. Commun. 2020, 11, 1391.

31. Chen, L.; Liang, Z.; Shao, S.; Huang, Q.; Tang, K.; Huang, R. First direct observation of the built-in electric field and oxygen vacancy migration in ferroelectric Hf0.5Zr0.5O2 film during electrical cycling. Nanoscale 2023, 15, 7014-22.

32. Hanson, E. D.; Lajaunie, L.; Hao, S.; et al. Systematic study of oxygen vacancy tunable transport properties of few-layer MoO3-x enabled by vapor-based synthesis. Adv. Funct. Mater. 2017, 27, 1605380.

33. Bhat, J.; Maddani, K.; Karguppikar, A.; Ganesh, S. Electron beam radiation effects on electrical and optical properties of pure and aluminum doped tin oxide films. Nucl. Instrum. Meth. Phys. Res. B. 2007, 258, 369-74.

34. Barzilay, M.; Qiu, T.; Rappe, A. M.; Ivry, Y. Epitaxial TiOx surface in ferroelectric BaTiO3: native structure and dynamic patterning at the atomic scale. Adv. Funct. Mater. 2020, 30, 1902549.

35. Vogel, T.; Kaiser, N.; Petzold, S.; et al. Defect-induced phase transition in hafnium oxide thin films: comparing heavy ion irradiation and oxygen-engineering effects. IEEE. Trans. Nucl. Sci. 2021, 68, 1542-7.

36. Zheng, Y.; Zhong, C.; Zheng, Y.; et al. In-situ atomic visualization of structural transformation in Hf0.5Zr0.5O2 ferroelectric thin film: from nonpolar tetragonal phase to polar orthorhombic phase. In Proceedings of the 2021 Symposium on VLSI Technology; 13-19 June 2021, Kyoto, Japan. Available from: https://ieeexplore.ieee.org/document/9508736 [Last accessed on 14 Mar 2025].

37. Ma, L. Y.; Liu, S. Structural polymorphism kinetics promoted by charged oxygen vacancies in HfO2. Phys. Rev. Lett. 2023, 130, 096801.

38. Liu, S.; Hanrahan, B. M. Effects of growth orientations and epitaxial strains on phase stability of HfO2 thin films. Phys. Rev. Mater. 2019, 3, 054404.

39. Xin, T.; Zheng, Y.; Cheng, Y.; et al. Atomic visualization of the emergence of orthorhombic phase in Hf0.5Zr0.5O2 ferroelectric film with in-situ rapid thermal annealing. In Proceedings of the 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits); 12-17 June 2022, Honolulu, HI, USA.

40. Grimley, E. D.; Schenk, T.; Sang, X.; et al. Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films. Adv. Elect. Mater. 2016, 2, 1600173.

41. Han, R.; Hong, P.; Ning, S.; et al. The effect of stress on HfO2-based ferroelectric thin films: a review of recent advances. J. Appl. Phys. 2023, 133, 240702.

42. Saini, B.; Huang, F.; Choi, Y.; et al. Field-induced ferroelectric phase evolution during polarization “wake-up” in Hf0.5Zr0.5O2 thin film capacitors. Adv. Elect. Mater. 2023, 9, 2300016.

43. Pešić, M.; Fengler, F. P. G.; Larcher, L.; et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv. Funct. Mater. 2016, 26, 4601-12.

44. Yang, J.; Liao, J.; Huang, J.; Yan, F.; Liao, M.; Zhou, Y. Kinetical phase transition paths and phase stability in ferroelectric HfO2. Scripta. Mater. 2024, 242, 115953.

45. Inenaga, K.; Motomura, R.; Ishimaru, M.; Nakamura, R.; Yasuda, H. Liquid-mediated crystallization of amorphous GeSn under electron beam irradiation. J. Appl. Phys. 2020, 127, 205304.

46. Yin, X.; Müller, F.; Huang, Q.; et al. An ultracompact single-ferroelectric field-effect transistor binary and multibit associative search engine. Adv. Intell. Syst. 2023, 5, 2200428.

47. Zheng, Y.; Zheng, Y.; Gao, Z.; et al. Atomic-scale characterization of defects generation during fatigue in ferroelectric Hf0.5Zr0.5O2 films: vacancy generation and lattice dislocation. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM); 11-16 December 2021, San Francisco, CA, USA.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/