REFERENCES
1. Chen, F.; Xu, Z. L. Design and manufacture of high-performance microbatteries: lithium and beyond. Microstructures 2022, 2, 2022012.
2. Hu, Y.; Wang, P.; Li, M.; Liu, Z.; Liang, S.; Fang, G. Challenges and industrial considerations towards stable and high-energy-density aqueous zinc-ion batteries. Energy. Environ. Sci. 2024, 17, 8078-93.
3. Wang, Y.; Wang, Z.; Pang, W. K.; et al. Solvent control of water O-H bonds for highly reversible zinc ion batteries. Nat. Commun. 2023, 14, 2720.
4. Sun, D.; Sun, Z.; Yang, D.; Jiang, X.; Tang, J.; Wang, X. Advances in boron nitride-based materials for electrochemical energy storage and conversion. EcoEnergy 2023, 1, 375-404.
5. Chavhan, M. P.; Kryeziu, A.; Ganguly, S.; Parmentier, J. Monolithic metal-based/porous carbon nanocomposites made from dissolved cellulose for use in electrochemical capacitor. Green. Carbon. 2024, 2, 109-17.
6. Huang, S.; Li, K.; He, Z.; et al. Rolling strategy for highly efficient preparation of phosphating interface enabled the stable lithium anode. J. Alloys. Compd. 2024, 1005, 176193.
7. Yang, H.; Zheng, H.; Yu, H.; et al. Coordinating ionic and electronic conductivity on 3D porous host enabling deep dense lithium deposition toward high-capacity lithium metal anodes. Nanoscale 2022, 14, 13722-30.
8. Cheng, Z.; Wang, K.; Fu, J.; et al. Texture exposure of unconventional (101)Zn facet: enabling dendrite-free Zn Deposition on metallic zinc anodes. Adv. Energy. Mater. 2024, 14, 2304003.
9. Ren, J.; Wu, H.; Yan, W.; Huang, P.; Lai, C. Stable zinc anode by regulating the solvated shell and electrode–electrolyte interface with a sodium tartrate additive. Ind. Chem. Mater. 2024, 2, 328-39.
10. Wei, Z.; Zhang, H.; Li, A.; et al. Construction of in-plane 3D network electrode strategy for promoting zinc ion storage capacity. Energy. Storage. Mater. 2023, 55, 754-62.
11. Bai, Y.; Deng, D.; Wang, J.; et al. Inhibited passivation by bioinspired cell membrane Zn interface for Zn-air batteries with extended temperature adaptability. Adv. Mater. 2024, 36, e2411404.
12. Wang, D.; Li, R.; Dong, J.; et al. Bidentate coordination enables anions-regulated solvation structure for advanced aqueous zinc metal batteries. Angew. Chem. Int. Ed. 2025, 64, e202414117.
13. Zhou, J.; Yu, H.; Qing, P.; et al. Interfacial double-coordination effect reconstructing anode/electrolyte interface for long-term and highly reversible Zn metal anodes. J. Colloid. Interface. Sci. 2025, 678, 772-82.
14. Deng, S.; Xu, B.; Zhao, J.; Fu, H. Advanced design for anti-freezing aqueous zinc-ion batteries. Energy. Storage. Mater. 2024, 70, 103490.
15. Zhou, J.; Zhang, L.; Peng, M.; et al. Diminishing interfacial turbulence by colloid-polymer electrolyte to stabilize zinc ion flux for deep-cycling Zn metal batteries. Adv. Mater. 2022, 34, e2200131.
16. Huang, R.; Zhang, J.; Wang, W.; et al. Dual-anion chemistry synchronously regulating the solvation structure and electric double layer for durable Zn metal anodes. Energy. Environ. Sci. 2024, 17, 3179-90.
17. Liu, W.; Liu, X.; Ning, F.; et al. Fabrication of a heterovalent dual-cation pre-embedded hydrated vanadium oxide cathode for high-performance zinc ion storage. J. Mater. Chem. A. 2024, 12, 11883-94.
18. Ma, G.; Yuan, W.; Li, X.; et al. Organic cations texture zinc metal anodes for deep cycling aqueous zinc batteries. Adv. Mater. 2024, 36, e2408287.
19. Zhang, M.; Li, S.; Tang, R.; et al. Stabilizing Zn/electrolyte interphasial chemistry by a sustained-release drug inspired indium-chelated resin protective layer for high-areal-capacity Zn//V2O5 batteries. Angew. Chem. Int. Ed. 2024, 63, e202405593.
20. Li, J.; Lou, Y.; Zhou, S.; et al. Intrinsically decoupled coordination chemistries enable quasi-eutectic electrolytes with fast kinetics toward enhanced zinc-ion capacitors. Angew. Chem. Int. Ed. 2024, 63, e202406906.
21. Chen, R.; Zhang, W.; Guan, C.; et al. Rational design of an in-situ polymer-inorganic hybrid solid electrolyte interphase for realising stable Zn metal anode under harsh conditions. Angew. Chem. Int. Ed. 2024, 63, e202401987.
22. Shang, Y.; Tong, Z.; Kundu, D. Decoding the zinc depletion-mediated failure in aqueous zinc batteries: on limiting parameters and accurate assessment. ACS. Energy. Lett. 2024, 9, 3084-92.
23. Qu, W.; Wen, C.; Chen, B.; Cai, Y.; Zhang, M. Sulfonate-functionalization in Zn-iodine batteries as one stone kills two birds: iodine limiter and uniform Zn plating guidance layer. Sci. China. Mater. 2024, 67, 2889-97.
24. Yu, H.; He, Z.; Chen, D.; et al. Zwitterionic materials for aqueous Zn-based energy storage devices: current developments and perspective. Energy. Rev. 2025, 4, 100107.
25. Zha, Z.; Sun, T.; Li, D.; Ma, T.; Zhang, W.; Tao, Z. Zwitterion as electrical double layer regulator to in-situ formation of fluorinated interphase towards stable zinc anode. Energy. Storage. Mater. 2024, 64, 103059.
26. Wang, L.; Yu, H.; Chen, D.; et al. Steric hindrance and orientation polarization by a zwitterionic additive to stabilize zinc metal anodes. Carbon. Neutral. 2024, 3, 996-1008.
27. Li, Z.; Shu, Z.; Shen, Z.; et al. Dissolution mechanism for dendrite-free aqueous zinc-ions batteries. Adv. Energy. Mater. 2024, 14, 2400572.
28. Wei, T.; Ren, Y.; Wang, Y.; et al. Addition of dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in zinc-ion batteries. ACS. Nano. 2023, 17, 3765-75.
29. Li, T. C.; Lin, C.; Luo, M.; et al. Interfacial molecule engineering for reversible Zn electrochemistry. ACS. Energy. Lett. 2023, 8, 3258-68.
30. Liu, D.; Zhang, Y.; Liu, S.; et al. Regulating the electrolyte solvation structure enables ultralong lifespan vanadium-based cathodes with excellent low-temperature performance. Adv. Funct. Mater. 2022, 32, 2111714.
31. Jiang, P.; Du, Q.; Shi, M.; Yang, W.; Liang, X. Stabilizing zinc anodes by a uniform nucleation process with cysteine additive. Small. Methods. 2024, 8, e2300823.
32. Liu, M.; Yuan, W.; Ma, G.; et al. In-Situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes. Angew. Chem. Int. Ed. 2023, 62, e202304444.
33. Zong, W.; Li, J.; Zhang, C.; et al. Dynamical Janus interface design for reversible and fast-charging zinc-iodine battery under extreme operating conditions. J. Am. Chem. Soc. 2024, 146, 21377-88.
34. Zhang, C.; Li, C.; Chen, D.; et al. Zn2+ flux regulator to modulate the interface chemistry toward highly reversible Zn anode. J. Colloid. Interface. Sci. 2025, 682, 232-41.
35. Zhao, R.; Dong, X.; Liang, P.; et al. Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater. 2023, 35, e2209288.
36. Kong, W.; Wan, F.; Lei, Y.; et al. Dynamic detection of decomposition gases in eco-friendly C5F10O gas-insulated power equipment by fiber-enhanced Raman spectroscopy. Anal. Chem. 2024, 96, 15313-21.
37. Zhao, Q.; Liu, W.; Ni, X.; et al. Steering interfacial renovation with highly electronegative Cl modulated trinity effect for exceptional durable zinc anode. Adv. Funct. Mater. 2024, 34, 2404219.
38. Cao, J.; Wu, H.; Zhang, D.; et al. In-situ ultrafast construction of zinc tungstate interface layer for highly reversible zinc anodes. Angew. Chem. Int. Ed. 2024, 63, e202319661.
39. Peng, M.; Tang, X.; Xiao, K.; Hu, T.; Yuan, K.; Chen, Y. Polycation-regulated electrolyte and interfacial electric fields for stable zinc metal batteries. Angew. Chem. Int. Ed. 2023, 62, e202302701.
40. Bu, F.; Gao, Y.; Zhao, W.; et al. Bio-inspired trace hydroxyl-rich electrolyte additives for high-rate and stable Zn-ion batteries at low temperatures. Angew. Chem. Int. Ed. 2024, 63, e202318496.
41. Chang, C.; Hu, S.; Li, T.; et al. A robust gradient solid electrolyte interphase enables fast Zn dissolution and deposition dynamics. Energy. Environ. Sci. 2024, 17, 680-94.
42. Chen, W.; Tan, Y.; Guo, C.; et al. Biomass-derived polymer as a flexible “zincophilic-hydrophobic” solid electrolyte interphase layer to enable practical Zn metal anodes. J. Colloid. Interface. Sci. 2024, 669, 104-16.
43. Ma, X.; Yu, H.; Yan, C.; et al. Nitroxyl radical triggered the construction of a molecular protective layer for achieving durable Zn metal anodes. J. Colloid. Interface. Sci. 2024, 664, 539-48.
44. Yuan, W.; Nie, X.; Wang, Y.; et al. Orientational electrodeposition of highly (002)-textured zinc metal anodes enabled by iodide ions for stable aqueous zinc batteries. ACS. Nano. 2023, 17, 23861-71.
45. Zhu, Q.; Sun, G.; Qiao, S.; et al. Selective shielding of the (002) plane enabling vertically oriented zinc plating for dendrite-free zinc anode. Adv. Mater. 2024, 36, e2308577.
46. Wang, C.; Yang, Y.; Zhang, S.; et al. The impact of surface functional groups on MXene anode protective layer in aqueous zinc-ion batteries: understanding the mechanism. J. Energy. Storage. 2024, 94, 112360.
47. Li, Y.; Yang, X.; He, Y.; et al. A Novel ultrathin multiple-kinetics-enhanced polymer electrolyte editing enabled wide-temperature fast-charging solid-state zinc metal batteries. Adv. Funct. Mater. 2024, 34, 2307736.
48. Yu, H.; Chen, D.; Zhang, L.; et al. Electrolyte engineering for optimizing anode/electrolyte interface towards superior aqueous zinc-ion batteries: a review. Trans. Nonferrous. Met. Soc. China. 2024, 34, 3118-50.
49. Meng, C.; He, W.; Tan, H.; Wu, X.; Liu, H.; Wang, J. A eutectic electrolyte for an ultralong-lived Zn//V2O5 cell: an in situ generated gradient solid-electrolyte interphase. Energy. Environ. Sci. 2023, 16, 3587-99.
50. Li, C.; Liao, T.; Chen, D.; et al. Fabrication of carbon-coated V2O5-x nanoparticles by plasma-enhanced chemical vapor deposition for high-performance aqueous zinc-ion battery composite cathodes. Chin. Chem. Lett. 2025, 36, 110557.
51. Yi, X.; Fu, H.; Rao, A. M.; et al. Safe electrolyte for long-cycling alkali-ion batteries. Nat. Sustain. 2024, 7, 326-37.
52. Qiu, M.; Liang, Y.; Hong, J.; Li, J.; Sun, P.; Mai, W. Entropy-driven hydrated eutectic electrolytes with diverse solvation configurations for all-temperature Zn-ion batteries. Angew. Chem. Int. Ed. 2024, 63, e202407012.