REFERENCES
1. Sabariego, C.; Fellinghauer, C.; Lee, L.; et al. Generating comprehensive functioning and disability data worldwide: development process, data analyses strategy and reliability of the WHO and World Bank Model Disability Survey. Arch. Public. Health. 2022, 80, 6.
2. Ersen, M.; Oztop, E.; Sariel, S. Cognition-enabled robot manipulation in human environments: requirements, recent work, and open problems. IEEE. Robot. Automat. Mag. 2017, 24, 108-22.
3. Sun, Y.; Xu, C.; Li, G.; et al. Intelligent human computer interaction based on non redundant EMG signal. Alex. Eng. J. 2020, 59, 1149-57.
4. Igual, C.; Pardo, L. A.; Hahne, J. M.; Igual, J. Myoelectric control for upper limb prostheses. Electronics 2019, 8, 1244.
5. Mane, S. M.; Kambli, R. A.; Kazi, F. S.; Singh, N. M. Hand motion recognition from single channel surface EMG using wavelet & artificial neural network. Procedia. Comput. Sci. 2015, 49, 58-65.
6. Qu, Y.; Shang, H.; Teng, S. Reduce sEMG channels for hand gesture recognition. In: 2020 3rd IEEE International Conference on Information Communication and Signal Processing (ICICSP), Shanghai, China. Sep 12-15, 2020. IEEE, 2020. pp. 215-20.
7. Ma, L.; Zhao, X.; Li, Z.; Zhang, D.; Xu, Z. An optimal channel selection method for EMG signals based on gradient boosting decision tree. Inf. Control. 2020, 49, 114-21.
8. Wang, Z.; Fang, Y.; Li, G.; Liu, H. Facilitate sEMG-Based human–machine interaction through channel optimization. Int. J. Human. Robot. 2019, 16, 1941001.
9. Huang, H.; Zhou, P.; Li, G.; Kuiken, T. A. An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface. IEEE. Trans. Neural. Syst. Rehabil. Eng. 2008, 16, 37-45.
10. Liu, J.; Li, X.; Li, G.; Zhou, P. EMG feature assessment for myoelectric pattern recognition and channel selection: a study with incomplete spinal cord injury. Med. Eng. Phys. 2014, 36, 975-80.
11. Niu, Y.; Chen, W.; Zeng, H.; Gan, Z.; Xiong, B. Optimizing sEMG gesture recognition: leveraging channel selection and feature compression for improved accuracy and computational efficiency. Appl. Sci. 2024, 14, 3389.
12. Zhang, Z.; Tang, Y.; Zhao, S.; Zhang, X. Real-time surface EMG pattern recognition for hand gestures based on support vector machine. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China. Dec 06-08, 2019. IEEE, 2019; pp. 1258-62.
13. Lee, K. H.; Min, J. Y.; Byun, S. Electromyogram-based classification of hand and finger gestures using artificial neural networks. Sensors 2021, 22, 225.
14. Geng, W.; Du, Y.; Jin, W.; Wei, W.; Hu, Y.; Li, J. Gesture recognition by instantaneous surface EMG images. Sci. Rep. 2016, 6, 36571.
15. Zhang, J.; Ling, C.; Li, S. Human movements classification using multi-channel surface EMG signals and deep learning technique. In: 2019 International Conference on Cyberworlds (CW), Kyoto, Japan. Oct 02-04, 2019. IEEE, 2019; pp. 267-73.
16. Hu, Y.; Wong, Y.; Wei, W.; Du, Y.; Kankanhalli, M.; Geng, W. A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLoS. One. 2018, 13, e0206049.
17. Wang, L.; Fu, J.; Zheng, B.; Zhao, H. Research on sEMG based gesture recognition usingthe Atention-based LSTM-CNN with stationary wavclet packet transform. In: 2022 4th International Conference on Advances in Computer Technology, Information Science and Communications (CTISC), Suzhou, China. Apr 22-24, 2022. IEEE, 2022; p. 1-6.
18. Alzahrani, M.; Almalki, M.; Althunayan, T.; Almohawis, A.; Almehaid, F.; Umedani, L. Functional anatomy of the hand: prevalence of the linburg–Comstock anomaly in a young saudi population. J. Musculoskelet. Surg. Res. 2018, 2, 21.
19. Boles, C. A.; Kannam, S.; Cardwell, A. B. The forearm: anatomy of muscle compartments and nerves. AJR. Am. J. Roentgenol. 2000, 174, 151-9.
20. Liu, X.; Zhang, M.; Wang, J.; et al. Gesture recognition of continuous wavelet transform and deep convolution attention network. Math. Biosci. Eng. 2023, 20, 11139-54.
21. Tang, D.; Yu, Z.; He, Y.; et al. Strain-insensitive elastic surface electromyographic (sEMG) electrode for efficient recognition of exercise intensities. Micromachines 2020, 11, 239.
22. Gijsberts, A.; Atzori, M.; Castellini, C.; Muller, H.; Caputo, B. Movement error rate for evaluation of machine learning methods for sEMG-based hand movement classification. IEEE. Trans. Neural. Syst. Rehabil. Eng. 2014, 22, 735-44.
23. Wang, M.; Wang, X.; Peng, C.; Zhang, S.; Fan, Z.; Liu, Z. Research on EMG segmentation algorithm and walking analysis based on signal envelope and integral electrical signal. Photon. Netw. Commun. 2019, 37, 195-203.
24. Khan, T. I.; Moznuzzaman, M.; Ide, S. Analysis of aging effect on lower limb muscle activity using short time Fourier transform and wavelet decomposition of electromyography signal. AIP. Adv. 2023, 13, 055011.
25. Kundu, A. S.; Mazumder, O.; Lenka, P. K.; Bhaumik, S. Hand gesture recognition based omnidirectional wheelchair control using IMU and EMG sensors. J. Intell. Robot. Syst. 2018, 91, 529-41.
26. Wang, Q.; Wu, B.; Zhu, P.; et al. ECA-Net: efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA. Jun 13-19, 2020. IEEE, 2020. pp. 11534-42.
27. Woo, S.; Park, J.; Lee, J.; Kweon, I. S. CBAM: convolutional block attention module. arXiv2018, arXiv:1807.16521. Available online: https://doi.org/10.48550/arXiv.1807.06521. [accessed on 1 Apr 2025]
28. Xu, X.; Jiang, H. A hybrid model based on ResNet and GCN for sEMG-based gesture recognition. J. Beijing. Inst. Technol. 2023, 32, 219-29.
29. Xu, Z.; Yu, J.; Xiang, W.; et al. A novel SE-CNN attention architecture for sEMG-based hand gesture recognition. Comput. Model. Eng. Sci. 2023, 134, 157-77.
30. Zhang, Y.; Yang, F.; Fan, Q.; Yang, A.; Li, X. Research on sEMG-based gesture recognition by dual-view deep learning. IEEE. Access. 2022, 10, 32928-37.
31. Minu, M. S.; Aroul, C. R.; Subashka, R. S. S. Optimal squeeze net with deep neural network-based arial image classification model in unmanned aerial vehicles. TS. 2022, 39, 275-81.
32. Sardeli, A. V.; Komatsu, T. R.; Mori, M. A.; Gáspari, A. F.; Chacon-Mikahil, M. P. T. Resistance training prevents muscle loss induced by caloric restriction in obese elderly individuals: a systematic review and meta-analysis. Nutrients 2018, 10, 423.