REFERENCES

1. Li, J.; Yang, G. Development and prospect of adaptive fault-tolerant control. Control. Decis. 2014, 29, 1921-26.

2. Li, Y.; Hou, Y.; Liu, C. Adaptive optimal fault-tolerant control based on fault degree. J. Comput. Eng. Appl. 2021, 57, 295-302.

3. Shen, Q.; Jiang, B.; Shi, P.; Lim, C. C. Novel neural networks-based fault tolerant control scheme with fault alarm. IEEE. Trans. Cybern. 2014, 44, 2190-201.

4. Shi, P.; Wang, X.; Meng, X.; He, M.; Mao, Y.; Wang, Z. Adaptive fault-tolerant control for open-circuit faults in dual three-phase PMSM drives. IEEE. Trans. Power. Electron. 2023, 38, 3676-88.

5. Kadiyam, J.; Parashar, A.; Mohan, S.; Deshmukh, D. Actuator fault-tolerant control study of an underwater robot with four rotatable thrusters. Ocean. Eng. 2020, 197, 106929.

6. Baraniuk, T.; Simoni, R.; Weihmann, L. Fault-tolerant architecture for AUVs. In: 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal. Nov 06-09, 2018. IEEE, 2018. pp. 1-6.

7. Panda, J. P.; Mitra, A.; Warrior, H. V. A review on the hydrodynamic characteristics of autonomous underwater vehicles. J. Eng. Marit. Environ. 2021, 235, 15-29.

8. Yu, J.; Zhang, A.; Wang, X. Research on thruster fault tolerant control allocation of a 7000m manned submarine. Robot 2006, 28, 519-24.

9. Esna, A. A.; Khaki, S. A.; Yazdanpanah, M. J. Reconfigurable control system design using eigen structure assignment: static, dynamic and robust approaches. Int. J. Control. 2005, 78, 1005-16.

10. Lin, C. M.; Chen, C. H. Robust fault-tolerant control for a biped robot using a recurrent cerebellar model articulation controller. IEEE. Trans. Syst. Man. Cybern. B. 2007, 37, 110-23.

11. Conte, G. Underwater robots: motion and force control of vehicle–manipulator systems. Int. J. Adapt. Control. Signal. Process. 2004, 18, 603-4.

12. Yang, K. C.; Yuh, J.; Choi, S. K. Experimental study of fault-tolerant system design for underwater robots. In: Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), Leuven, Belgium. May 20, 1998. IEEE, 1998; pp. 1051-6.

13. Yang, K. C. H.; Yuh, J.; Choi, S. K. Fault-tolerant system design of an autonomous underwater vehicle ODIN: an experimental study. Int. J. Syst. Sci. 1999, 30, 1011-9.

14. Zhang, Y.; Jiang, J. Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 2008, 32, 229-52.

15. Podder, T. K.; Sarkar, N. Fault tolerant decomposition of thruster forces of an autonomous underwater vehicle. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, USA. May 10-15, 1999. IEEE, 1999; pp. 84-9.

16. Podder, T. K.; Sarkar, N. Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy. Robotics. Auton. Syst. 2001, 34, 39-52.

17. Fossen, T. I. Guidance and control of ocean vehicles. 1994. https://books.google.com/books/about/Guidance_and_Control_of_Ocean_Vehicles.html?id=cwJUAAAAMAAJ. (accessed on 2025-03-19).

18. Omerdic, E.; Roberts, G. Thruster fault diagnosis and accommodation for open-frame underwater vehicles. Control. Eng. Pract. 2004, 12, 1575-98.

19. Zhao, W.; Liu, H.; Wan, Y. Data-driven fault-tolerant formation control for nonlinear quadrotors under multiple simultaneous actuator faults. Syst. Control. Lett. 2021, 158, 229-52.

20. Chen, H.; Jiao, S.; Heidari, A. A.; Wang, M.; Chen, X.; Zhao, X. An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy. Convers. Manag. 2019, 195, 927-42.

21. Chen, H.; Xu, Y.; Wang, M.; Zhao, X. A balanced whale optimization algorithm for constrained engineering design problems. Appl. Math. Model. 2019, 71, 45-59.

22. Wang, M.; Chen, H.; Yang, B.; et al. Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 2017, 267, 69-84.

23. Wang, M.; Chen, H. Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl. Soft. Comput. 2020, 88, 105946.

24. Chen, M.; Liu, Y.; Zhu, D.; Shen, A.; Wang, C.; Ji, K. Parameter identification of an open-frame underwater vehicle based on numerical simulation and quantum particle swarm optimization. Intell. Robot. 2024, 4, 216-29.

25. Zhu, D.; Liu, J.; Yang, S. X. Particle swarm optimization approach to thruster fault-tolerant control of unmanned underwater vehicles. Int. J. Robot. Autom. 2011, 26.

26. Tian, Q.; Wang, T.; Liu, B.; Ran, G. Thruster fault diagnostics and fault tolerant control for autonomous underwater vehicle with ocean currents. Machines 2022, 10, 582.

27. Zhu, D.; Liu, Q.; Hu, Z. Fault-tolerant control algorithm of the manned submarine with multi-thruster based on quantum-behaved particle swarm optimization. Int. J. Control. 2011, 84, 1817-29.

28. Zhu, D. J.; Wang, L.; Hu, Z.; Yang, S. X. A grasshopper optimization-based fault-tolerant control algorithm for a human occupied submarine with the multi-thruster system. Ocean. Eng. 2021, 242, 110101.

29. Zhu, D. J.; Wang, L.; Zhang, H.; Yang, S. X. A GOA-based fault-tolerant trajectory tracking control for an underwater vehicle of multi-thruster system without actuator saturation. IEEE. Trans. Autom. Sci. Eng. 2024, 21, 771-82.

30. Sun, B.; Pang, W.; Chen, M.; Zhu, D. Development and experimental verification of search and rescue ROV. Intell. Robot. 2022, 4, 355-70.

31. Li, S.; Chen, H.; Wang, M.; Heidari, A. A.; Mirjalili, S. Slime mould algorithm: a new method for stochastic optimization. Future. Gener. Comput. Syst. 2020, 111, 300-23.

Intelligence & Robotics
ISSN 2770-3541 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/