REFERENCES

1. Gupta, A.; Savarese, S.; Ganguli, S.; Fei-Fei, L. Embodied intelligence via learning and evolution. Nat. Commun. 2021, 12, 5721.

2. Nygaard, T. F.; Martin, C. P.; Torresen, J.; Glette, K.; Howard, D. Real-world embodied AI through a morphologically adaptive quadruped robot. Nat. Mach. Intell. 2021, 3, 410-9.

3. Li, C.; Zhang, R.; Wong, J.; et al. BEHAVIOR-1K: a benchmark for embodied AI with 1, 000 everyday activities and realistic simulation. In: Proceedings of The 6th Conference on Robot Learning, PMLR; 2023. pp. 80–93. https://proceedings.mlr.press/v205/li23a.html. (accessed 2025-02-28).

4. Driess, D.; Xia, F.; Sajjadi, M. S.; et al. PaLM-E: an embodied multimodal language model. arXiv2023, arXiv: 2303.03378. Available online: https://doi.org/10.48550/arXiv.2303.03378. (accessed on 28 Feb 2025).

5. Duan, J.; Yu, S.; Tan, H. L.; Zhu, H.; Tan, C. A survey of embodied AI: from simulators to research tasks. IEEE. Trans. Emerg. Top. Comput. Intell. 2022, 6, 230-44.

6. Kolve, E.; Mottaghi, R.; Han, W.; et al. AI2-THOR: an interactive 3D environment for visual AI. arXiv2017, arXiv: 1712.05474. Available online: https://doi.org/10.48550/arXiv.1712.05474. (accessed on 28 Feb 2025).

7. Shen, B.; Xia, F.; Li, C.; et al. iGibson 1.0: a simulation environment for interactive tasks in large realistic scenes. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 Sep - 01 Oct, 2021. IEEE, 2021; pp. 7520–7.

8. Savva, M.; Kadian, A.; Maksymets, O.; et al. Habitat: a platform for embodied AI research. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 Oct - 02 Nov, 2019. IEEE, 2019; pp. 9339–47.

9. Liu, Y.; Chen, W.; Bai, Y.; et al. Aligning cyber space with physical world: a comprehensive survey on Embodied AI. arXiv2024, arXiv: 2407.06886. Available online: https://doi.org/10.48550/arXiv.2407.06886. (accessed 28 Feb 2025).

10. Auerbach, J.; Aydin, D.; Maesani, A.; et al. RoboGen: robot generation through artificial evolution. In: ALIFE 14: The Fourteenth International Conference on the Synthesis and Simulation of Living Systems; 2014. pp. 136–7.

11. Yang, Y.; Sun, F. Y.; Weihs, L.; et al. Holodeck: Language guided generation of 3D Embodied AI environments. In: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 16-22 Jun, 2024. IEEE, 2024; pp. 16227–37.

12. Yang, Y.; Jia, B.; Zhi, P.; Huang, S. PhyScene: physically interactable 3D scene synthesis for Embodied AI. In: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 16-22 Jun, 2024. IEEE, 2024; pp. 16262–72.

13. Deitke, M.; VanderBilt, E.; Herrasti, A.; et al. ProcTHOR: large-scale Embodied AI using procedural generation. arXiv2022, arXiv: 2206.06994. Available online: https://doi.org/10.48550/arXiv.2206.06994. (accessed 28 Feb 2025).

14. Chang, A.; Dai, A.; Funkhouser, T.; et al. Matterport3D: learning from RGB-D data in indoor environments. arXiv2017, arXiv: 1709.06158. Available online: https://doi.org/10.48550/arXiv.1709.06158. (accessed 28 Feb 2025).

15. Wang, H.; Lv, L.; Li, X.; et al. A safety management approach for Industry 5.0' s human-centered manufacturing based on digital twin. J. Manuf. Syst. 2023, 66, 1-12.

16. Lu, Y.; Liu, C.; Wang, K. I. K.; Huang, H.; Xu, X. Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot. Comput. Integr. Manuf. 2020, 61, 101837.

17. Kim, D.; Choi, M.; Um, J. Digital twin for autonomous collaborative robot by using synthetic data and reinforcement learning. Robot. Comput. Integr. Manuf. 2024, 85, 102632.

18. Lu, Y.; Zheng, H.; Chand, S.; et al. Outlook on human-centric manufacturing towards Industry 5.0. J. Manuf. Syst. 2022, 62, 612-27.

19. Mazumder, A.; Sahed, M. F.; Tasneem, Z.; et al. Towards next generation digital twin in robotics: trends, scopes, challenges, and future. Heliyon 2023, 9, e13359.

20. Zafar, M. H.; Langås, E. F.; Sanfilippo, F. Exploring the synergies between collaborative robotics, digital twins, augmentation, and industry 5.0 for smart manufacturing: a state-of-the-art review. Robot. Comput. Integr. Manuf. 2024, 89, 102769.

21. Allen, B. D. Digital twins and living models at NASA. In: Digital Twin Summit; 2021. https://ntrs.nasa.gov/citations/20210023699. (accessed 2025-02-28).

22. Jarvis, C. R. An overview of NASA's digital fly-by-wire technology development program. 1976. https://ntrs.nasa.gov/citations/19760024052. (accessed 2025-02-28).

23. Grieves, M. Digital twin: manufacturing excellence through virtual factory replication. https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf. (accessed 2025-02-28).

24. Jacoby, M.; Usländer, T. Digital twin and internet of things - current standards landscape. Appl. Sci. 2020, 10, 6519.

25. Suhail, S.; Hussain, R.; Jurdak, R.; Hong, C. S. Trustworthy digital twins in the industrial internet of things with blockchain. IEEE. Int. Comput. 2021, 26, 58-67.

26. De Benedictis, A.; Flammini, F.; Mazzocca, N.; Somma, A.; Vitale, F. Digital twins for anomaly detection in the industrial Internet of Things: conceptual architecture and proof-of-concept. IEEE. Trans. Ind. Inform. 2023, 19, 11553-63.

27. Leng, J.; Wang, D.; Shen, W.; Li, X.; Liu, Q.; Chen, X. Digital twins-based smart manufacturing system design in Industry 4.0: a review. J. Manuf. Syst. 2021, 60, 119-37.

28. Stavropoulos, P.; Mourtzis, D. Chapter 10 - Digital twins in Industry 4.0. In: Design and operation of production networks for mass personalization in the era of cloud technology. Elsevier; 2022. pp. 277–316.

29. Sharma, A.; Kosasih, E.; Zhang, J.; Brintrup, A.; Calinescu, A. Digital twins: state of the art theory and practice, challenges, and open research questions. J. Ind. Inf. Integr. 2022, 30, 100383.

30. Glaessgen, E.; Stargel, D. The digital twin paradigm for future NASA and U.S. Air Force vehicles. In: 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA; 2012. pp. 1818.

31. Huang, Y.; Zhang, J.; Chen, X.; Lam, A. H. F, Chen, B. M. From simulation to prediction: enhancing digital twins with advanced generative AI technologies. In: 2024 IEEE 18th International Conference on Control & Automation (ICCA), Reykjavik, Iceland, 18-21 Jun, 2024. IEEE, 2024; pp. 490–5.

32. Rodrigo, M. S.; Rivera, D.; Moreno, J. I.; Àlvarez-Campana, M.; López, D. R. Digital twins for 5G networks: a modeling and deployment methodology. IEEE. Access. 2023, 11, 38112-26.

33. Hasan, H. R.; Salah, K.; Jayaraman, R.; et al. A blockchain-based approach for the creation of digital twins. IEEE. Access. 2020, 8, 34113-26.

34. Feng, K.; Borghesani, P.; Smith, W. A.; et al. Vibration-based updating of wear prediction for spur gears. Wear 2019, 426, 1410-5.

35. Feng, K.; Ji, J. C.; Zhang, Y.; Ni, Q.; Liu, Z.; Beer, M. Digital twin-driven intelligent assessment of gear surface degradation. Mech. Syst. Signal. Process. 2023, 186, 109896.

36. Zhang, Y.; Ji, J.; Ren, Z.; et al. Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing. Reliab. Eng. Syst. Saf. 2023, 234, 109186.

37. Feng, K.; Xu, Y.; Wang, Y.; et al. Digital twin enabled domain adversarial graph networks for bearing fault diagnosis. IEEE. Trans. Ind. Cyber. Phys. Syst. 2023, 1, 113-22.

38. Kamel Boulos, M. N.; Zhang, P. Digital twins: from personalised medicine to precision public health. J. Pers. Med. 2021, 11, 745.

39. Alazab, M.; Khan, L. U.; Koppu, S.; et al. Digital twins for healthcare 4.0 - recent advances, architecture, and open challenges. IEEE. Consum. Electron. Mag. 2022, 12, 29-37.

40. Pylianidis, C.; Osinga, S.; Athanasiadis, I. N. Introducing digital twins to agriculture. Comput. Electron. Agric. 2021, 184, 105942.

41. Purcell, W.; Neubauer, T. Digital twins in agriculture: a state-of-the-art review. Smart. Agric. Technol. 2023, 3, 100094.

42. Wang, Z.; Lv, C.; Wang, F. Y. A new era of intelligent vehicles and intelligent transportation systems: digital twins and parallel intelligence. IEEE. Trans. Intell. Veh. 2023, 8, 2619-27.

43. Hu, X.; Li, S.; Huang, T.; Tang, B.; Huai, R.; Chen, L. How simulation helps autonomous driving: a survey of sim2real, digital twins, and parallel intelligence. IEEE. Trans. Intell. Veh. 2024, 9, 593-612.

44. Arraño-Vargas, F.; Konstantinou, G. Modular design and real-time simulators toward power system digital twins implementation. IEEE. Trans. Ind. Inform. 2022, 19, 52-61.

45. Lv, Z.; Guo, J.; Lv, H. Safety poka yoke in zero-defect manufacturing based on digital twins. IEEE. Trans. Ind. Inform. 2022, 19, 1176-84.

46. Mo, F.; Rehman, H. U.; Monetti, F. M.; et al. A framework for manufacturing system reconfiguration and optimisation utilising digital twins and modular artificial intelligence. Robot. Comput. Integr. Manuf. 2023, 82, 102524.

47. Kapteyn, M. G.; Knezevic, D. J.; Huynh, D. B. P.; Tran, M.; Willcox, K. E. Data-driven physics-based digital twins via a library of component-based reduced-order models. Int. J. Numer. Method. Eng. 2022, 123, 2986-3003.

48. Lv, Z.; Chen, D.; Feng, H.; Zhu, H.; Lv, H. Digital twins in unmanned aerial vehicles for rapid medical resource delivery in epidemics. IEEE. Trans. Intell. Transp. Syst. 2021, 23, 25106-14.

49. Li, X.; Liu, H.; Wang, W.; Zheng, Y.; Lv, H.; Lv, Z. Big data analysis of the Internet of Things in the digital twins of smart city based on deep learning. Future. Gener. Comput. Syst. 2022, 128, 167-77.

50. Lv, Z.; Li, Y.; Feng, H.; Lv, H. Deep learning for security in digital twins of cooperative intelligent transportation systems. IEEE. Trans. Intell. Transp. Syst. 2021, 23, 16666-75.

51. Wan, Z.; Dong, Y.; Yu, Z.; Lv, H.; Lv, Z. Semi-supervised support vector machine for digital twins based brain image fusion. Front. Neurosci. 2021, 15, 705323.

52. Darvishi, H.; Ciuonzo, D.; Eide, E. R.; Rossi, P. S. Sensor-fault detection, isolation and accommodation for digital twins via modular data-driven architecture. IEEE. Sensors. J. 2020, 21, 4827-38.

53. Malik, A. A.; Brem, A. Digital twins for collaborative robots: a case study in human-robot interaction. Robot. Comput. Integr. Manuf. 2021, 68, 102092.

54. Dembski, F.; Wössner, U.; Letzgus, M.; Ruddat, M.; Yamu, C. Urban digital twins for smart cities and citizens: the case study of Herrenberg, Germany. Sustainability 2020, 12, 2307.

55. Wu, B.; Widanage, W. D.; Yang, S.; Liu, X. Battery digital twins: perspectives on the fusion of models, data and artificial intelligence for smart battery management systems. Energy. AI. 2020, 1, 100016.

56. Keshvarparast, A.; Battini, D.; Battaia, O.; Pirayesh, A. Collaborative robots in manufacturing and assembly systems: literature review and future research agenda. J. Intell. Manuf. 2024, 35, 2065-118.

57. Simões, A. C.; Pinto, A.; Santos, J.; Pinheiro, S.; Romero, D. Designing human-robot collaboration (HRC) workspaces in industrial settings: a systematic literature review. J. Manuf. Syst. 2022, 62, 28-43.

58. Burghardt, A.; Szybicki, D.; Gierlak, P.; Kurc, K.; Pietruś, P.; Cygan, R. Programming of industrial robots using virtual reality and digital twins. Appl. Sci. 2020, 10, 486.

59. Kuts, V.; Otto, T.; Tähemaa, T.; Bondarenko, Y. Digital twin based synchronised control and simulation of the industrial robotic cell using virtual reality. J. Mach. Eng. 2019, 19, 128-45.

60. Sun, F.; Liu, N.; Wang, X.; et al. Digital-twin-assisted skill learning for 3C assembly tasks. IEEE. Trans. Cybern. 2024. DOI: 10.1109/TCYB.2024.3368148.

61. Xu, W.; Yang, H.; Ji, Z.; Ba, M. Cognitive digital twin-enabled multi-robot collaborative manufacturing: framework and approaches. Comput. Ind. Eng. 2024, 194, 110418.

62. Liu, Y.; Wang, X.; Yang, K.; Pan, Y.; Wang, Q. Architecture and implementation of high-fidelity digital twins for industrial robots. In: 2023 International Conference on Frontiers of Robotics and Software Engineering (FRSE); IEEE, 2023; pp. 207–14.

63. Li, J.; Liu, M.; Wang, W.; Hu, C. Inspection robot based on offline digital twin synchronization architecture. IEEE. J. Radio. Freq. Identif. 2022, 6, 943-47.

64. Liang, C. J.; McGee, W.; Menassa, C. C.; Kamat, V. R. Real-time state synchronization between physical construction robots and process-level digital twins. Constr. Robot. 2022, 6, 57-73.

65. Zhang, Z.; Dershan, R.; Enayati, A. M. S.; et al. A high-fidelity simulation platform for industrial manufacturing by incorporating robotic dynamics into an industrial simulation tool. IEEE. Robot. Autom. Lett. 2022, 7, 9123-8.

66. Liu, Y.; Xu, H.; Liu, D.; Wang, L. A digital twin-based sim-to-real transfer for deep reinforcement learning-enabled industrial robot grasping. Robot. Comput. Integr. Manuf. 2022, 78, 102365.

67. Mo, Y.; Ma, S.; Gong, H.; Chen, Z.; Zhang, J.; Tao, D. Terra: A smart and sensible digital twin framework for robust robot deployment in challenging environments. IEEE. Internet. of. Things. J. 2021, 8, 14039-50.

68. Cascone, L.; Nappi, M.; Narducci, F.; Passero, I. DTPAAL: digital twinning pepper and ambient assisted living. IEEE. Trans. Ind. Inform. 2021, 18, 1397-404.

69. Xu, W.; Cui, J.; Li, L.; Yao, B.; Tian, S.; Zhou, Z. Digital twin-based industrial cloud robotics: framework, control approach and implementation. J. Manuf. Syst. 2021, 58, 196-209.

70. Kaigom, E. G.; Roßmann, J. Value-driven robotic digital twins in cyber - physical applications. IEEE. Trans. Ind. Inform. 2020, 17, 3609-19.

71. Petersen, K.; Nagpal, R.; Werfel, J. TERMES: an autonomous robotic system for three-dimensional collective construction. In: Robotics: science and systems. Los Angeles, CA, USA; 2011. pp. 257–64.

72. Zhang, X.; Zheng, L.; Fan, W.; Ji, W.; Mao, L.; Wang, L. Knowledge graph and function block based Digital Twin modeling for robotic machining of large-scale components. Robot. Comput. Integr. Manuf. 2024, 85, 102609.

73. Zhang, X.; Wu, B.; Zhang, X.; Duan, J.; Wan, C.; Hu, Y. An effective MBSE approach for constructing industrial robot digital twin system. Robot. Comput. Integr. Manuf. 2023, 80, 102455.

74. Chen, L.; Bi, G.; Yao, X.; et al. Multisensor fusion-based digital twin for localized quality prediction in robotic laser-directed energy deposition. Robot. Comput. Integr. Manuf. 2023, 84, 102581.

75. Li, X.; Liu, G.; Sun, S.; Yi, W.; Li, B. Digital twin model-based smart assembly strategy design and precision evaluation for PCB kit-box build. J. Manuf. Syst. 2023, 71, 206-23.

76. Liu, J.; Xu, Z.; Xiong, H.; Lin, Q.; Xu, W.; Zhou, Z. Digital twin-driven robotic disassembly sequence dynamic planning under uncertain missing condition. IEEE. Trans. Ind. Inform. 2023, 19, 11846-55.

77. Wenna, W.; Weili, D.; Changchun, H.; Heng, Z.; Haibing, F.; Yao, Y. A digital twin for 3D path planning of large-span curved-arm gantry robot. Robot. Comput. Integr. Manuf. 2022, 76, 102330.

78. Hu, W.; Wang, C.; Liu, F.; Peng, X.; Sun, P.; Tan, J. A grasps-generation-and-selection convolutional neural network for a digital twin of intelligent robotic grasping. Robot. Comput. Integr. Manuf. 2022, 77, 102371.

79. Tipary, B.; Erdős, G. Generic development methodology for flexible robotic pick-and-place workcells based on Digital Twin. Robot. Comput. Integr. Manuf. 2021, 71, 102140.

80. Weiss, A.; Wortmeier, A. K.; Kubicek, B. Cobots in industry 4.0: a roadmap for future practice studies on human - robot collaboration. IEEE. Trans. Hum. Mach. Syst. 2021, 51, 335-45.

81. Djuric, A. M.; Urbanic, R. J.; Rickli, J. L. A framework for collaborative robot (CoBot) integration in advanced manufacturing systems. SAE. Int. J. Mater. Manuf. 2016, 9, 457-64.

82. Javaid, M.; Haleem, A.; Singh, R. P.; Rab, S.; Suman, R. Significant applications of Cobots in the field of manufacturing. Cogn. Robot. 2022, 2, 222-33.

83. Pauliková, A.; Gyurák Babel'ová, Z.; Ubárová, M. Analysis of the impact of human-cobot collaborative manufacturing implementation on the occupational health and safety and the quality requirements. Int. J. Environ. Res. Public. Health. 2021, 18, 1927.

84. Lu, Y.; Adrados, J. S.; Chand, S. S.; Wang, L. Humans are not machines - anthropocentric human-machine symbiosis for ultra-flexible smart manufacturing. Engineering 2021, 7, 734-37.

85. Mark, B. G.; Rauch, E.; Matt, D. T. Worker assistance systems in manufacturing: a review of the state of the art and future directions. J. Manuf. Syst. 2021, 59, 228-50.

86. Leng, J.; Sha, W.; Wang, B.; et al. Industry 5.0: prospect and retrospect. J. Manuf. Syst. 2022, 65, 279-95.

87. Huang, S.; Wang, B.; Li, X.; Zheng, P.; Mourtzis, D.; Wang, L. Industry 5.0 and Society 5.0 - Comparison, complementation and co-evolution. J. Manuf. Syst. 2022, 64, 424-8.

88. Sharma, M.; Sehrawat, R.; Luthra, S.; Daim, T.; Bakry, D. Moving towards industry 5.0 in the pharmaceutical manufacturing sector: challenges and solutions for Germany. IEEE. T. Eng. Manag. 2022, 71, 13757-74.

89. Park, H.; Shin, M.; Choi, G.; et al. Integration of an exoskeleton robotic system into a digital twin for industrial manufacturing applications. Robot. Comput. Integr. Manuf. 2024, 89, 102746.

90. Wang, S.; Zhang, J.; Wang, P.; Law, J.; Calinescu, R.; Mihaylova, L. A deep learning-enhanced Digital Twin framework for improving safety and reliability in human-robot collaborative manufacturing. Robot. Comput. Integr. Manuf. 2024, 85, 102608.

91. Choi, S. H.; Park, K. B.; Roh, D. H.; et al. An integrated mixed reality system for safety-aware human-robot collaboration using deep learning and digital twin generation. Robot. Comput. Integr. Manuf. 2022, 73, 102258.

92. Guo, Y.; Sun, J.; Zhang, R.; Jiang, Z.; Mi, Z.; Yao, C. An object-driven navigation strategy based on active perception and semantic association. IEEE. Robot. Autom. Lett. 2024, 9, 7110-7.

93. Gao, R.; Li, H.; Dharan, G.; Wang, Z.; Li, C.; Xia, F. Sonicverse: a multisensory simulation platform for embodied household agents that see and hear. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May - 02 Jun, 2023. IEEE, 2023; pp. 704–11.

94. Wang, T.; Mao, X.; Zhu, C.; et al. Embodiedscan: a holistic multi-modal 3D perception suite towards embodied AI. arXiv2023, arVix: 2312.16170. Available online: https://doi.org/10.48550/arXiv.2312.16170. (accessed 28 Feb 2025).

95. He, Z.; Wang, L.; Dang, R.; Li, S.; Yan, Q.; Liu, C. Learning depth representation from RGB-D videos by time-aware contrastive pre-training. IEEE. T. Circ. Syst. Vid. 2023, 34, 4143-58.

96. Jing, Y.; Kong, T. Learning to explore informative trajectories and samples for embodied perception. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May - 02 Jun, 2023. IEEE, 2023; pp. 6050–6.

97. Patel, S.; Wani, S.; Jain, U.; Schwing, A. G.; Lazebnik, S.; Savva, M. Interpretation of emergent communication in heterogeneous collaborative embodied agents. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, 10-17 Oct, 2021. IEEE, 2021; pp. 15953–63.

98. Peri, N.; Luiten, J.; Li, M.; Ošep, A.; Leal-Taixé, L.; Ramanan, D. Forecasting from liDAR via future object detection. arXiv2022, arXiv: 2203.16297. Available online: https://doi.org/10.48550/arXiv.2203.16297. (accessed 28 Feb 2025).

99. Gan, C.; Zhou, S.; Schwartz, J.; Alter, S.; Bhandwaldar, A.; Gutfreund, D. The threedworld transport challenge: a visually guided task-and-motion planning benchmark towards physically realistic embodied AI. In: 2022 International conference on robotics and automation (ICRA), Philadelphia, USA, 23-27 May, 2022. IEEE, 2022; pp. 8847–54.

100. Gan, Y.; Zhang, B.; Shao, J.; Han, Z.; Li, A.; Dai, X. Embodied intelligence: bionic robot controller integrating environment perception, autonomous planning, and motion control. IEEE. Robot. Autom. Lett. 2024, 9, 4559-66.

101. Behrens, J. K.; Nazarczuk, M.; Stepanova, K.; Hoffmann, M.; Demiris, Y.; Mikolajczyk, K. Embodied reasoning for discovering object properties via manipulation. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi'an, China, 30 May - 05 Jun, 2021. IEEE, 2021; pp. 10139–45.

102. Huang, X.; Batra, D.; Rai, A.; Szot, A. Skill transformer: a monolithic policy for mobile manipulation. arXiv2023, arXiv: 2308.09873. Available online: https://doi.org/10.48550/arXiv.2308.09873. (accessed 28 Feb 2025).

103. Li, B.; Zhang, Y.; Zhang, T.; et al. Embodied footprints: a safety-guaranteed collision-avoidance model for numerical optimization-based trajectory planning. IEEE. Trans. Intell. Transpor. Syst. 2023, 25, 2046-60.

104. Pervan, A.; Murphey, T. D. Algorithmic design for embodied intelligence in synthetic cells. IEEE. Trans. Autom. Sci. Eng. 2020, 18, 864-75.

105. Dorbala, V. S.; Mullen, J. F.; Manocha, D. Can an embodied agent find your "cat-shaped mug"? LLM-based zero-shot object navigation. IEEE. Robot. Autom. Lett. 2023, 9, 4083-90.

106. Dwivedi, K.; Roig, G.; Kembhavi, A.; Mottaghi, R. What do navigation agents learn about their environment? In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 18-24 Jun, 2022. IEEE, 2022; pp. 10276–85.

107. Gao, C.; Liu, S.; Chen, J.; et al. Room-object entity prompting and reasoning for embodied referring expression. IEEE. Trans. Pattern. Anal. Mach. Intell. 2023, 46, 994-1010.

108. Zhao, C.; Yuan, S.; Jiang, C.; et al. ERRA: an embodied representation and reasoning architecture for long-horizon language-conditioned manipulation tasks. IEEE. Robot. Autom. Lett. 2023, 8, 3230-7.

109. Liu, X.; Guo, D.; Liu, H.; Sun, F. Multi-agent embodied visual semantic navigation with scene prior knowledge. IEEE. Robot. Autom. Lett. 2022, 7, 3154-61.

110. Sermanet, P.; Ding, T.; Zhao, J.; et al. RoboVQA: multimodal long-horizon reasoning for robotics. In: 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13-17 May, 2024. IEEE, 2024; pp. 645–52.

111. Zhao, Q.; Zhang, L.; Wu, L.; Qiao, H.; Liu, Z. A real 3D embodied dataset for robotic active visual learning. IEEE. Robot. Autom. Lett. 2022, 7, 6646-52.

112. Long, Y.; Wei, W.; Huang, T.; Wang, Y.; Dou, Q. Human-in-the-loop embodied intelligence with interactive simulation environment for surgical robot learning. IEEE. Robot. Autom. Lett. 2023, 8, 4441-8.

113. Hashemian, A. M.; Adhikari, A.; Aguilar, I. A.; Kruijff, E.; von der Heyde, M.; Riecke, B. E. Leaning-based interfaces improve simultaneous locomotion and object interaction in VR compared to the handheld controller. IEEE. Trans. Vis. Comput. Graph. 2023, 30, 4665-82.

114. Sagar, M.; Moser, A.; Henderson, A. M.; et al. A platform for holistic embodied models of infant cognition, and its use in a model of event processing. IEEE. Trans. Cogn. Dev. Syst. 2022, 15, 1916-27.

115. Legrand, J.; Wang, H.; Iida, F.; Vanderborght, B. A variable stiffness anthropomorphic finger through embodied intelligence design. IEEE. Robot. Autom. Lett. 2023, 9, 1580-7.

116. Fischer, T.; Demiris, Y. Computational modeling of embodied visual perspective taking. IEEE. Trans. Cogn. Dev. Syst. 2019, 12, 723-32.

117. Greenacre, M.; Groenen, P. J.; Hastie, T.; d'Enza, A. I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods. Primers. 2022, 2, 100.

118. Cancemi, S. A.; Frano, R. L.; Santus, C.; Inoue, T. Unsupervised anomaly detection in pressurized water reactor digital twins using autoencoder neural networks. Nucl. Eng. Des. 2023, 413, 112502.

119. Raptis, T. P.; Passarella, A. A survey on networked data streaming with apache kafka. IEEE. Access. 2023, 11, 85333-50.

120. Abramova, V.; Bernardino, J. NoSQL databases: MongoDB vs cassandra. In: Proceedings of the international C* conference on computer science and software engineering; 2013. pp. 14–22.

121. Shah, J.; Dubaria, D. Building modern clouds: using docker, kubernetes & Google cloud platform. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, USA, 07-09 Jan, 2019. IEEE, 2019; pp. 0184–9.

122. Khan, L. U.; Saad, W.; Niyato, D.; Han, Z.; Hong, C. S. Digital-twin-enabled 6G: vision, architectural trends, and future directions. IEEE. Commun. Mag. 2022, 60, 74-80.

123. Vuković, M.; Mazzei, D.; Chessa, S.; Fantoni, G. Digital twins in industrial IoT: a survey of the state of the art and of relevant standards. In: 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 14-23 Jun, 2021. IEEE, 2021; pp. 1–6.

124. Liu, X.; Zheng, L.; Wang, Y.; et al. Human-centric collaborative assembly system for large-scale space deployable mechanism driven by Digital Twins and wearable AR devices. J. Manuf. Syst. 2022, 65, 720-42.

125. Zhou, H.; Wang, L.; Pang, G.; et al. Toward human motion digital twin: a motion capture system for human-centric applications. IEEE. Trans. Autom. Sci. Eng. 2024, 22, 619-30.

126. Wang, B.; Zhou, H.; Li, X.; et al. Human digital twin in the context of Industry 5.0. Robot. Comput. Integr. Manuf. 2024, 85, 102626.

127. Fan, J.; Zheng, P.; Lee, C. K. M. A vision-based human digital twin modeling approach for adaptive human–robot collaboration. J. Manuf. Sci. Eng. 2023, 145, 121002.

128. You, Y.; Cai, B.; Pham, D. T.; Liu, Y.; Ji, Z. A human digital twin approach for fatigue-aware task planning in human-robot collaborative assembly. Comput. Ind. Eng. 2025, 200, 110774.

129. Okegbile, S. D.; Cai, J.; Niyato, D.; Yi, C. Human digital twin for personalized healthcare: vision, architecture and future directions. IEEE. Netw. 2022, 37, 262-9.

130. Wang, B.; Zhou, H.; Yang, G.; Li, X.; Yang, H. Human digital twin (HDT) driven human-cyber-physical systems: key technologies and applications. Chin. J. Mech. Eng. 2022, 35, 11.

131. Almeaibed, S.; Al-Rubaye, S.; Tsourdos, A.; Avdelidis, N. P. Digital twin analysis to promote safety and security in autonomous vehicles. IEEE. Commun. Stands. Mag. 2021, 5, 40-6.

132. Wang, T.; Zheng, P.; Li, S.; Wang, L. Multimodal human-robot interaction for human-centric smart manufacturing: a survey. Adv. Intell. Syst. 2024, 6, 2300359.

133. Halawa, H.; Abdelhafez, H. A.; Boktor, A.; Ripeanu, M. NVIDIA jetson platform characterization. In: Euro-Par 2017: Parallel Processing: 23rd International Conference on Parallel and Distributed Computing, Santiago de Compostela, Spain, 28 Aug - 1 Sep, 2017. Springer, 2017; pp. 92–105.

134. Allison, D.; Smith, P.; McLaughlin, K. Digital twin-enhanced methodology for training edge-based models for cyber security applications. In: 2022 IEEE 20th International Conference on Industrial Informatics (INDIN), Perth, Austrilia, 25-28 Jul, 2022. IEEE, 2022; pp. 226–32.

135. Lei, B.; Janssen, P.; Stoter, J.; Biljecki, F. Challenges of urban digital twins: a systematic review and a Delphi expert survey. Autom. Constr. 2023, 147, 104716.

136. Lehtola, V. V.; Koeva, M.; Elberink, S. O.; et al. Digital twin of a city: review of technology serving city needs. Int. J. Appl. Earth. Obs. Geoinf. 2022, 114, 102915.

137. Ye, X.; Du, J.; Han, Y.; et al. Developing human-centered urban digital twins for community infrastructure resilience: a research agenda. J. Plan. Lit.2023, 38, 187–99. https://www.researchgate.net/publication/365888617_Developing_Human-Centered_Urban_Digital_Twins_for_Community_Infrastructure_Resilience_A_Research_Agenda. (accessed 2025-03-06).

138. Angin, P.; Anisi, M. H.; Göksel, F.; Gürsoy, C.; Büyükgülcü, A. AgriLoRa: a digital twin framework for smart agriculture. J. Wirel. Mob. Netw. Ubiquitous. Comput. Dependable. Appl. 2020, 11, 77-96.

Intelligence & Robotics
ISSN 2770-3541 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/