REFERENCES

1. Liu Z, Zhang Y, Yu X, Yuan C. Unmanned surface vehicles: an overview of developments and challenges. Annu Rev Control 2016;41:71-93.

2. Su M, Pu R, Wang Y, Yu M. A collaborative siege method of multiple unmanned vehicles based on reinforcement learning. Intell Robot 2024;4:39-60.

3. Barrera C, Padrón Armas I, Luis F, Llinas O, Marichal Plasencia GN. Trends and challenges in unmanned surface vehicles (USV): from survey to shipping. TransNav 2021;15:135-42.

4. Xue K, Liu J, Xiao N, Ji X, Qian H. A bio-inspired simultaneous surface and underwater risk assessment method based on stereo vision for USVs in nearshore clean waters. IEEE Robot Autom Lett 2023;8:360-7.

5. Zhao L, Bai Y. Unlocking the ocean 6G: a review of path-planning techniques for maritime data harvesting assisted by autonomous marine vehicles. J Mar Sci Eng 2024;12:126.

6. Zhang G, Liu S, Huang J, Zhang W. Dynamic event-triggered path-following control of underactuated surface vehicle with the experiment verification. IEEE T Veh Technol 2022;71:10415-25.

7. Wang YL, Han QL. Network-based fault detection filter and controller coordinated design for unmanned surface vehicles in network environments. IEEE Trans Ind Informat 2016;12:1753-65.

8. Wang X, Fei Z, Gao H, Yu J. Integral-based event-triggered fault detection filter design for unmanned surface vehicles. IEEE Trans Ind Informat 2019;15:5626-36.

9. Jiang C, Zhang G, Huang C, Zhang W. Memory-based event-triggered path-following control for a USV in the presence of DoS attack. Ocean Eng 2024;310:118627.

10. Zhou L, Shen Z, Nie Y, Yu H. Event-triggered adaptive dynamic programming for optimal tracking control of unmanned surface vessel with input constraints. Trans Inst Meas Control 2023;45:2835-47.

11. Girard A. Dynamic triggering mechanisms for event-triggered control. IEEE Trans Autom Control 2015;60:1992-7.

12. Cao L, Yao D, Li H, Meng W, Lu R. Fuzzy-based dynamic event triggering formation control for nonstrict-feedback nonlinear MASs. Fuzzy Set Syst 2023;452:1-22.

13. He W, Xu B, Han QL, Qian F. Adaptive consensus control of linear multiagent systems with dynamic event-triggered strategies. IEEE Trans Cybern 2020;50:2996-3008.

14. Wang XY, Chang XH. Nonlinear continuous-time system H∞ control based on dynamic quantization and event-triggered mechanism. Neural Proc Lett 2023;55:12223-38.

15. Alfaro-Cid E, McGookin EW, Murray-Smith DJ, Fossen TI. Genetic algorithms optimisation of decoupled Sliding Mode controllers: simulated and real results. Control Eng Pract 2005;13:739-48.

16. Zhang Y, McEwen RS, Ryan JP, Bellingham JG. Design and tests of an adaptive triggering method for capturing peak samples in a thin phytoplankton layer by an autonomous underwater vehicle. IEEE J Oceanic Eng 2010;35:785-96.

17. Rodriguez J, Castañeda H, Gonzalez-Garcia A, Gordillo JL. Finite-time control for an unmanned surface vehicle based on adaptive sliding mode strategy. Ocean Eng 2022;15:111255.

18. Liu W, Ye H, Yang X. Super-twisting sliding mode control for the trajectory tracking of underactuated USVs with disturbances. J Mar Sci Eng 2023;11:636.

19. Yu XN, Hao LY. Integral sliding mode fault tolerant control for unmanned surface vessels with quantization: less iterations. Ocean Eng 2022;260:111820.

20. Zhang Q, Zhang S, Liu Y, Zhang Y, Hu Y. Adaptive terminal sliding mode control for USV-ROVs formation under deceptive attacks. Front Mar Sci 2024;11:1320361.

21. Sun Q, Liu ZW, Chi M, Ge MF, He D. Robust coverage control of multiple USVs with time- varying disturbances. Intell Robot 2023;3:242-56.

22. Han J, Xiong J, He Y, Gu F, Li D. Nonlinear modeling for a water-jet propulsion USV: an experimental study. IEEE Trans Ind Electron 2017;64:3348-58.

23. Chen Z, Zhang Y, Zhang Y, Nie Y, Tang J, Zhu S. Disturbance-observer-based sliding mode control design for nonlinear unmanned surface vessel with uncertainties. IEEE Access 2019;7:148522-30.

24. Chen Z, Zhang Y, Nie Y, Tang J, Zhu S. Adaptive sliding mode control design for nonlinear unmanned surface vessel using RBFNN and disturbance-observer. IEEE Access 2020;8:45457-67.

25. Chang XH, Han X. Observer-based fuzzy l2-l control for discrete-time nonlinear systems. IEEE Trans Fuzzy Syst 2024;32:2523-8.

26. Ning J, Ma Y, Li T, Chen CLP, Tong S. Event-triggered based trajectory tracking control of under-actuated unmanned surface vehicle with state and input quantization. IEEE Trans Intell Veh 2024;9:3127-39.

27. Wang H, Zhang S. Event-triggered reset trajectory tracking control for unmanned surface vessel system. In: Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering. 2021;235:633–45.

28. Zhao Y, Sun X, Wang G, Fan h. Adaptive backstepping sliding mode tracking control for underactuated unmanned surface vehicle with disturbances and input saturation. IEEE Access 2021;9:1304-12.

29. Zhu F, Peng Y, Cheng M, Luo J, Wang Y. Finite-time observer-based trajectory tracking control of underactuated USVs using hierarchical non-singular terminal sliding mode. Cyber Phys Syst 2022;8:263-85.

30. Wan L, Su Y, Zhang H, Tang Y, Shi B. Global fast terminal sliding mode control based on radial basis function neural network for course keeping of unmanned surface vehicle. Int J Adv Robot Syst 2019;16:1729881419829961.

31. Zhao C, Yan H, Gao D, Wang R, Li Q. Adaptive neural network iterative sliding mode course tracking control for unmanned surface vessels. J Math 2022;2022:1417704.

32. Bateman A, Hull J, Lin Z. A backstepping-based low-and-high gain design for marine vehicles. Int J Robust Nonlinear Control 2009;19:480-93.

33. Zhang J, Liu X, Wang X, Wang Y, Wang Y. Adaptive prescribed performance tracking control for underactuated unmanned surface ships with input quantization. Intell Robot 2024;4:146-63.

34. Huang T, Xue Y, Xue Z, Zhang Z, Miao Z, Liu Y. USV-tracker: a novel USV tracking system for surface investigation with limited resources. Ocean Eng 2024;312:119196.

35. Qiu B, Wang G, Fan Y, Mu D, Sun X. Adaptive sliding mode trajectory tracking control for unmanned surface vehicle with modeling uncertainties and input saturation. Appl Sci 2019;9:1240.

36. Li J, Zhang G, Li B. Robust adaptive neural cooperative control for the USV-UAV based on the LVS-LVA guidance principle. J Mar Sci Eng 2022;10:51.

37. Wu GX, Ding Y, Tahsin T, Atilla I. Adaptive neural network and extended state observer-based non-singular terminal sliding modetracking control for an underactuated USV with unknown uncertainties. Appl Ocean Res 2023;135:103560.

38. Yu S, Lu J, Zhu G, Yang S. Event-triggered finite-time tracking control of underactuated MSVs based on neural network disturbance observer. Ocean Eng 2022;253:111169.

39. Guo BZ, Zhao Zl. On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst Control Lett 2011;60:420-30.

40. Huang Y, Wang J, Shi D, Shi L. Toward event-triggered extended state observer. IEEE Trans Autom Control 2018;63:1842-49.

41. Xu Z, Xie N, Shen H, Hu X, Liu Q. Extended state observer-based adaptive prescribed performance control for a class of nonlinear systems with full-state constraints and uncertainties. Nonlinear Dynam 2021;105:345-58.

42. Skjetne R, Fossen TI, Kokotović PV. Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory. Automatica 2005;41:289-98.

Intelligence & Robotics
ISSN 2770-3541 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/