REFERENCES

1. Son LH, Tuan TM. Dental segmentation from X-ray images using semi-supervised fuzzy clustering with spatial constraints. Eng Appl of Art Int 2017;59:186-95.

2. Civit-Masot J, Luna-Perejón F, Corral JMR, et al. A study on the use of Edge TPUs for eye fundus image segmentation. Eng Appl Art Int 2021;104:104384.

3. Akbari Y, Hassen H, Al-Maadeed S, Zughaier SM. COVID-19 lesion segmentation using lung CT scan images: comparative study based on active contour models. Applied Sciences 2021;11:8039.

4. Guo Q, Wang L, Shen S. Multipleʜchannel local binary fitting model for medical image segmentation. Chin J Electron 2015;24:802-6.

5. Zhang D, Li J, Li X, Du Z, Xiong L, Ye M. Local—global attentive adaptation for object detection. Eng Appl Art Int 2021;100:104208.

6. Yang C, Wu L, Chen Y, Wang G, Weng G. An active contour model based on retinex and pre-Fitting reflectance for fast image segmentation. Symmetry 2022;14:2343.

7. Chen H, Liu Z, Alippi C, Huang B, Liu D. Explainable intelligent fault diagnosis for nonlinear dynamic systems: from unsupervised to supervised learning. IEEE Trans Neur Netw Lear Syst 2022;Early Access.

8. Ge P, Chen Y. An automatic detection approach for wearing safety helmets on construction site based on YOLOv5. In: 2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS). IEEE; 2022. pp. 140-45.

9. Cao Y, Wang G, Yan D, Zhao Z. Two algorithms for the detection and tracking of moving vehicle targets in aerial infrared image sequences. Remote Sensing 2016;8:28.

10. Wu S. A traffic motion object extraction algorithm. Int J Bifurcation Chaos 2015;25:1540039.

11. Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans Pattern Anal Machine Intell 2000;22:266-80.

12. Wu Z, Tian E, Chen H. Covert attack detection for LFC systems of electric vehicles: a dual time-varying coding method. IEEE/ASME Trans Mechatron 2022:1-11.

13. Cootes TF, Edwards GJ, Taylor CJ. Active appearance models. IEEE Trans Pattern Anal Machine Intell 2001;23:681-85.

14. Mille J. Narrow band region-based active contours and surfaces for 2D and 3D segmentation. Compu Vis Image Und 2009;113:946-65.

15. Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process 2001;10:266-77.

16. Tsai A, Yezzi A, Willsky AS. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans Image Process 2001;10:1169-86.

17. Wang G, Zhang F, Chen Y, Weng G, Chen H. An active contour model based on local pre-piecewise fitting bias corrections for fast and accurate segmentation. IEEE Trans Instrum Meas 2023;72:1-13.

18. Xiang Y, Chung ACS, Ye J. An active contour model for image segmentation based on elastic interaction. J Comput Phys 2006;219:455-76.

19. Huang AA, Abugharbieh R, Tam R. A Hybrid Geometric—Statistical Deformable Model for Automated 3-D Segmentation in Brain MRI. IEEE Trans Biomed Eng 2009;56:1838-48.

20. Pluempitiwiriyawej C, Moura JMF, Wu YJL, Ho C. STACS: new active contour scheme for cardiac MR image segmentation. IEEE Trans Med Imaging 2005;24:593-603.

21. Bowden A, Sirakov NM. Active contour directed by the poisson gradient vector field and edge tracking. J Math Imaging Vis 2021;63:665-80.

22. Fahmi R, Jerebko A, Wolf M, Farag AA. Robust segmentation of tubular structures in medical images. In: Reinhardt JM, Pluim JPW, editors. SPIE Proceedings. SPIE; 2008. pp. 691443-1443-7.

23. Zhang H, Morrow P, McClean S, Saetzler K. Coupling edge and region-based information for boundary finding in biomedical imagery. Pattern Recogn 2012;45:672-84.

24. Wen J, Yan Z, Jiang J. Novel lattice Boltzmann method based on integrated edge and region information for medical image segmentation. Biomed Mater Eng 2014;24:1247-52.

25. Lv H, Zhang Y, Wang R. Active contour model based on local absolute difference energy and fractional-order penalty term. Appl Math Model 2022;107:207-32.

26. Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Comm Pure Appl Math 1989;42:577-685.

27. Caselles V, Catte F, Coll T, Dibos F. A geometric model for active contours in image processing. Numer Math 1993;66:1-31.

28. Caselles V, Kimmel R, Sapiro G. Geodesic active contours. Int J Compu Vis 1997;22:61-79.

29. Bresson X, Esedoglu S, Vandergheynst P, Thiran JP, Osher S. Fast global minimization of the active contour/snake model. Math Imaging Vis 2007;28:151-67.

30. Cohen LD, Kimmel R. Global minimum for active contour models: a minimal path approach. Int J Compu Vis 1997;24:57-78.

31. Li C, Xu C, Gui C, Fox MD. istance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 2010;19:3243-54.

32. Li C, Huang R, Ding Z, et al. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 2011;20:2007-16.

33. Li C, Kao CY, Gore JC, Ding Z. Implicit active contours driven by local binary fitting energy. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2007. pp. 1-7.

34. Li C, Kao CY, Gore JC, Ding Z. Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 2008;17:1940-9.

35. Zhang K, Song H, Zhang L. Active contours driven by local image fitting energy. Pattern Recogn 2010;43:1199-206.

36. Chan TF, Esedoglu S, Nikolova M. Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J Appl Math 2006;66:1632-48.

37. Chambolle A, Cremers D, Pock T. A convex approach to minimal partitions. SIAM J Imaging Sci 2012;5:1113-58.

38. Wang L, Li C, Sun Q, Xia D, Kao CY. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput Med Imaging Graph 2009;33:520-31.

39. Ding K, Xiao L, Weng G. Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation. Signal Proce 2017;134:224-33.

40. Wang L, He L, Mishra A, Li C. Active contours driven by local Gaussian distribution fitting energy. Signal Proce 2009;89:2435-47.

41. Jin R, Weng G. Active contours driven by adaptive functions and fuzzy c-means energy for fast image segmentation. Signal Proce 2019;163:1-10.

42. Liu S, Peng Y. A local region-based Chan—Vese model for image segmentation. Pattern Recogn 2012;45:2769-79.

43. Liu W, Shang Y, Yang X. Active contour model driven by local histogram fitting energy. Pattern Recognit Lett 2013;34:655-62.

44. Wang H, Huang TZ, Xu Z, Wang Y. An active contour model and its algorithms with local and global Gaussian distribution fitting energies. Inform Sciences 2014;263:43-59.

45. Ji Z, Xia Y, Sun Q, Cao G, Chen Q. Active contours driven by local likelihood image fitting energy for image segmentation. Inform Sciences 2015;301:285-304.

46. Yang Y, Ren H, Hou X. Level set framework based on local scalable Gaussian distribution and adaptive-scale operator for accurate image segmentation and correction. Signal Processing: Image Communication 2022;104:116653.

47. Ge P, Chen Y, Wang G, Weng G. A hybrid active contour model based on pre-fitting energy and adaptive functions for fast image segmentation. Pattern Recogn Lett 2022;158:71-79.

48. Ding K, Xiao L, Weng G. Active contours driven by local pre-fitting energy for fast image segmentation. Pattern Recogn Lett 2018;104:29-36.

49. Ge P, Chen Y, Wang G, Weng G. An active contour model driven by adaptive local pre-fitting energy function based on Jeffreys divergence for image segmentation. Expert Syst Appl 2022;210:118493.

50. Liu G, Jiang Y, Chang B, Liu D. Superpixel-based active contour model via a local similarity factor and saliency. Measurement 2022;188:110442.

51. Chen H, Zhang H, Zhen X. A hybrid active contour image segmentation model with robust to initial contour position. Multimed Tools Appl 2022 sep.

52. Yang Y, Hou X, Ren H. Efficient active contour model for medical image segmentation and correction based on edge and region information. Expert Syst Appl 2022;194:116436.

53. Zhang W, Wang X, You W, et al. RESLS: Region and edge synergetic level set framework for image segmentation. IEEE Trans Image Process 2020;29:57-71.

54. Dong B, Weng G, Jin R. Active contour model driven by Self Organizing Maps for image segmentation. Expert Syst Appl 2021;177:114948.

55. Fang J, Liu H, Liu J, et al. Fuzzy region-based active contour driven by global and local fitting energy for image segmentation. Applied Soft Comput 2021;100:106982.

56. Weng G, Dong B, Lei Y. A level set method based on additive bias correction for image segmentation. Expert Syst Appl 2021;185:115633.

57. Jin R, Weng G. A robust active contour model driven by pre-fitting bias correction and optimized fuzzy c-means algorithm for fast image segmentation. Neurocomputing 2019;359:408-19.

58. Han B, Wu Y. Active contour model for inhomogenous image segmentation based on Jeffreys divergence. Pattern Recogn 2020;107:107520.

59. Asim U, Iqbal E, Joshi A, Akram F, Choi KN. Active contour model for image segmentation with dilated convolution filter. IEEE Access 2021;9:168703-14.

60. Costea C, Gavrea B, Streza M, Belean B. Edge-based active contours for microarray spot segmentation. Proce Compu Sci 2021;192:369-75.

61. Fang J, Liu H, Zhang L, Liu J, Liu H. Region-edge-based active contours driven by hybrid and local fuzzy region-based energy for image segmentation. Inform Sciences 2021;546:397-419.

62. Yu H, He F, Pan Y. A novel segmentation model for medical images with intensity inhomogeneity based on adaptive perturbation. Multimed Tools Appl 2019;78:11779-98.

63. Sirakov NM. A new active convex hull model for image regions. J Math Imaging Vis 2006;26:309-25.

64. Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Compu Phys 1988;79:12-49.

65. Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vision 1988;1:321-31.

66. Bresson X, Vandergheynst P, Thiran JP. A variational model for object segmentation using boundary information and shape prior driven by the mumford-shah functional. Int J Comput Vision 2006;68:145-62.

67. Deriche M, Amin A, Qureshi M. Color image segmentation by combining the convex active contour and the Chan Vese model. Pattern Anal Applic 2019;22:343-57.

68. Aubert G, Kornprobst P. Mathematical problems in Image Processing. New York: Springer; 2006.

69. Wang Y, He C. An adaptive level set evolution equation for contour extraction. Appl Math Comput 2013;219:11420-29.

70. Yan X, Weng G. Hybrid active contour model driven by optimized local pre-fitting image energy for fast image segmentation. Appl Math Model 2022;101:586-99.

71. Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. European Conference on Computer Vision 2018 Feb.

72. He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. arXiv 2017 Mar.

73. Chen X, Williams BM, Vallabhaneni SR, et al. Learning active contour models for medical image segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2019. pp. 11624-32.

74. Ma J, He J, Yang X. Learning geodesic active contours for embedding object global information in segmentation CNNs. IEEE Trans Med Imaging 2021;40:93-104.

75. Gu J, Fang Z, Gao Y, Tian F. Segmentation of coronary arteries images using global feature embedded network with active contour loss. Comput Med Imaging Graph 2020;86:101799.

76. Gur S, Wolf L, Golgher L, Blinder P. Unsupervised microvascular image segmentation using an active contours mimicking neural network. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE; 2019. pp. 10721-30.

77. Kim B, Ye JC. Mumford—Shah Loss Functional for Image Segmentation With Deep Learning. IEEE Trans Image Process 2020;29:1856-66.

78. Tao H, Qiu J, Chen Y, Stojanovic V, Cheng L. Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion. J Franklin Ins 2023;360:1454-77.

79. Chen H, Li L, Shang C, Huang B. Fault detection for nonlinear dynamic systems With consideration of modeling errors: a data-Driven approach. IEEE Trans Cybern 2022:1-11.

80. Qu F, Tian E, Zhao X. Chance-Constrained $$ H_\infty$$ State Estimation for Recursive Neural Networks Under Deception Attacks and Energy Constraints: The Finite-Horizon Case. IEEE Trans Neural Netw Learn Syst 2022:1-12.

81. Chen Y, Jiang W, Charalambous T. Machine learning based iterative learning control for non-repetitive time-varying systems. Int J Robust Nonlinear 2022;Early Veiw.

82. Han B, Wu Y. A hybrid active contour model driven by novel global and local fitting energies for image segmentation. Multimed Tools Appl 2018;77:29193-208.

83. Yang X, Jiang X, Zhou L, Wang Y, Zhang Y. Active contours driven by Local and Global Region-Based Information for Image Segmentation. IEEE Access 2020;8:6460-70.

84. Chen Y, Zhou Y. Machine learning based decision making for time varying systems: Parameter estimation and performance optimization. Knowledge-Based Systems 2020;190:105479.

85. Chen Y, Zhou Y, Zhang Y. Machine Learning-Based Model Predictive Control for Collaborative Production Planning Problem with Unknown Information. Electronics 2021;10:1818.

86. Chen H, Chai Z, Dogru O, Jiang B, Huang B. Data-Driven Designs of Fault Detection Systems via Neural Network-Aided Learning. IEEE Trans Neur Net Lear Syst 2021:1-12.

87. Jiang W, Chen Y, Chen H, Schutter BD. A Unified Framework for Multi-Agent Formation with a Non-repetitive Leader Trajectory: Adaptive Control and Iterative Learning Control. TechRxiv 2023 jan.

Intelligence & Robotics
ISSN 2770-3541 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/