REFERENCES

1. Zhang K, Chen J, Li Y, Zhang X. Visual tracking and depth estimation of mobile robots without desired velocity information. IEEE Trans Cybern 2018;50:361-73.

2. Xiao J, Stolkin R, Gao Y, Leonardis A. Robust fusion of color and depth data for RGB-D target tracking using adaptive range-invariant depth models and spatio-temporal consistency constraints. IEEE Trans Cybern 2017;48:2485-99.

3. Gedik OS, Alatan AA. 3-D rigid body tracking using vision and depth sensors. IEEE Trans Cybern 2013;43:1395-405.

4. van der Sommen F, Zinger S, With P, et al. Accurate biopsy-needle depth estimation in limited-angle tomography using multi-view geometry. In: Medical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling. vol. 9786. International Society for Optics and Photonics 2016. p. 97860D.

5. Eigen D, Puhrsch C, Fergus R. Depth map prediction from a single image using a multi-scale deep network. arXiv preprint arXiv: 14062283 2014.

6. Chang Y, Jung C, Sun J. Joint reflection removal and depth estimation from a single image. IEEE Trans Cybern 2020; doi: 10.1109/TCYB.2019.2959381.

7. Liu F, Shen C, Lin G. Deep convolutional neural fields for depth estimation from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015. pp. 5162-70.

8. Laina I, Rupprecht C, Belagiannis V, Tombari F, Navab N. Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth International Conference on 3D Vision (3DV). IEEE; 2016. pp. 239-48.

9. Chen W, Fu Z, Yang D, Deng J. Single-image depth perception in the wild. Advances in Neural Information Processing Systems 2016;29:730-38.

10. Kuznietsov Y, Stuckler J, Leibe B. Semi-supervised deep learning for monocular depth map prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017. pp. 6647-55.

11. Garg R, Bg VK, Carneiro G, Reid I. Unsupervised cnn for single view depth estimation: Geometry to the rescue. In: European Conference on Computer Vsion. Springer; 2016. pp. 740-56.

12. Godard C, Mac Aodha O, Brostow GJ. Unsupervised monocular depth estimation with left-right consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017. pp. 270-79.

13. Zhan H, Garg R, Weerasekera CS, et al. Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018. pp. 340-49.

14. Li R, Wang S, Long Z, Gu D. Undeepvo: Monocular visual odometry through unsupervised deep learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE; 2018. pp. 7286-91.

15. Poggi M, Aleotti F, Tosi F, Mattoccia S. Towards real-time unsupervised monocular depth estimation on cpu. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. pp. 5848-54.

16. Zhou T, Brown M, Snavely N, Lowe DG. Unsupervised learning of depth and ego-motion from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017. pp. 1851-58.

17. Casser V, Pirk S, Mahjourian R, Angelova A. Depth prediction without the sensors: Leveraging structure for unsupervised learning from monocular videos. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2019. pp. 8001-8.

18. Yin Z, Shi J. Geonet: Unsupervised learning of dense depth, optical flow and camera pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018. pp. 1983-92.

19. Luo C, Yang Z, Wang P, et al. Every pixel counts++: Joint learning of geometry and motion with 3d holistic understanding. IEEE Trans Pattern Anal Mach Intell 2019;42:2624-41.

20. Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017. pp. 1492-500.

21. Yang HH, Yang CHH, Tsai YCJ. Y-net: Multi-scale feature aggregation network with wavelet structure similarity loss function for single image dehazing. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2020. pp. 2628-32.

22. Godard C, Mac Aodha O, Firman M, Brostow GJ. Digging into self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision 2019. pp. 3828-38.

23. Wang C, Buenaposada JM, Zhu R, Lucey S. Learning depth from monocular videos using direct methods. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018. pp. 2022-30.

24. Ranjan A, Jampani V, Balles L, et al. Competitive collaboration: joint unsupervised learning of depth, camera motion, optical flow and motion segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2019. pp. 12240-49.

25. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Icml 2010.

26. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004;13:600-612.

27. Ketkar N. Introduction to pytorch. In: Deep learning with python. Springer; 2017. pp. 195-208.

28. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980 2014.

29. Yang Z, Wang P, Xu W, Zhao L, Nevatia R. Unsupervised learning of geometry with edge-aware depth-normal consistency. arXiv preprint arXiv:171103665 2017.

30. Mahjourian R, Wicke M, Angelova A. Unsupervised learning of depth and ego-motion from monocular video using 3d geometric constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018. pp. 5667-75.

31. Zou Y, Luo Z, Huang JB. Df-net: Unsupervised joint learning of depth and flow using cross-task consistency. In: Proceedings of the European Conference on Computer Vision (ECCV) 2018. pp. 36-53.

32. Yang Z, Wang P, Wang Y, Xu W, Nevatia R. Lego: Learning edge with geometry all at once by watching videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018. pp. 225-34.

33. Mur-Artal R, Montiel JMM, Tardos JD. ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE T ROBOT 2015;31:1147-63.

Intelligence & Robotics
ISSN 2770-3541 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/