REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.
2. Heald RJ, Husband EM, Ryall RD. The mesorectum in rectal cancer surgery--the clue to pelvic recurrence? Br J Surg 1982;69:613-6.
3. De Caluwe L, Van Nieuwenhove Y, Ceelen WP. Preoperative chemoradiation versus radiation alone for stage II and III resectable rectal cancer. Cochrane Database Syst Rev 2013:CD006041.
4. Quirke P, Steele R, Monson J, Grieve R, Khanna S, et al. Effect of the plane of surgery achieved on local recurrence in patients with operable rectal cancer: a prospective study using data from the MRC CR07 and NCIC-CTG CO16 randomised clinical trial. Lancet 2009;373:821-8.
5. Leonard D, Penninckx F, Laenen A, Kartheuser A; Procare. Scoring the quality of total mesorectal excision for the prediction of cancer-specific outcome. Colorectal Dis 2015;17:O115-22.
6. Kitz J, Fokas E, Beissbarth T, Strobel P, Wittekind C, et al. Association of plane of total mesorectal excision with prognosis of rectal cancer: secondary analysis of the CAO/ARO/AIO-04 Phase 3 randomized clinical trial. JAMA Surg 2018;153:e181607.
7. Kusters M, Marijnen CA, van de Velde CJ, Rutten HJ, Lahaye MJ, et al. Patterns of local recurrence in rectal cancer; a study of the Dutch TME trial. Eur J Surg Oncol 2010;36:470-6.
8. Nagtegaal ID, Quirke P. What is the role for the circumferential margin in the modern treatment of rectal cancer? J Clin Oncol 2008;26:303-12.
9. Birbeck KF, Macklin CP, Tiffin NJ, Parsons W, Dixon MF, et al. Rates of circumferential resection margin involvement vary between surgeons and predict outcomes in rectal cancer surgery. Ann Surg 2002;235:449-57.
10. Garcia-Granero E, Faiz O, Munoz E, Flor B, Navarro S, et al. Macroscopic assessment of mesorectal excision in rectal cancer: a useful tool for improving quality control in a multidisciplinary team. Cancer 2009;115:3400-11.
11. van der Pas MH, Haglind E, Cuesta MA, Furst A, Lacy AM, et al. Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol 2013;14:210-8.
12. Kang SB, Park JW, Jeong SY, Nam BH, Choi HS, et al. Open versus laparoscopic surgery for mid or low rectal cancer after neoadjuvant chemoradiotherapy (COREAN trial): short-term outcomes of an open-label randomised controlled trial. Lancet Oncol 2010;11:637-45.
13. Guillou PJ, Quirke P, Thorpe H, Walker J, Jayne DG, et al. Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. Lancet 2005;365:1718-26.
14. Martinez-Perez A, Carra MC, Brunetti F, de’Angelis N. Short-term clinical outcomes of laparoscopic vs open rectal excision for rectal cancer: A systematic review and meta-analysis. World J Gastroenterol 2017;23:7906-16.
15. Fleshman J, Branda M, Sargent DJ, Boller AM, George V, et al. Effect of laparoscopic-assisted resection vs open resection of Stage II or III rectal cancer on pathologic outcomes: the ACOSOG Z6051 randomized clinical trial. JAMA 2015;314:1346-55.
16. Stevenson AR, Solomon MJ, Lumley JW, Hewett P, Clouston AD, et al. Effect of laparoscopic-assisted resection vs open resection on pathological outcomes in rectal cancer: the ALaCaRT randomized clinical trial. JAMA 2015;314:1356-63.
17. Martinez-Perez A, Carra MC, Brunetti F, de’Angelis N. Pathologic outcomes of laparoscopic vs open mesorectal excision for rectal cancer: a systematic review and meta-analysis. JAMA Surg 2017;152:e165665.
18. Fleshman J, Branda ME, Sargent DJ, Boller AM, George VV, et al. Disease-free survival and local recurrence for laparoscopic resection compared with open resection of Stage II to III rectal cancer: follow-up results of the ACOSOG Z6051 randomized controlled trial. Ann Surg 2019;269:589-95.
19. Stevenson ARL, Solomon MJ, Brown CSB, Lumley JW, Hewett P, et al. Disease-free survival and local recurrence after laparoscopic-assisted resection or open resection for rectal cancer: the australasian laparoscopic cancer of the rectum randomized clinical trial. Ann Surg 2019;269:596-602.
20. Martinez-Perez A, de’Angelis N. Comment on “Mid-term results of ACOSOG Z6051 trial sustain the unresolved debate”. Ann Surg 2019;270:e52-3.
21. Petrucciani N, Martinez-Perez A, Bianchi G, Memeo R, Brunetti F, et al. The use of laparoscopy for locally advanced rectal cancer. Minerva Chir 2018;73:77-92.
22. de’Angelis N, Lizzi V, Azoulay D, Brunetti F. Robotic versus laparoscopic right colectomy for colon cancer: analysis of the initial simultaneous learning curve of a surgical fellow. J Laparoendosc Adv Surg Tech A 2016;26:882-92.
23. Ahmed J, Nasir M, Flashman K, Khan J, Parvaiz A. Totally robotic rectal resection: an experience of the first 100 consecutive cases. Int J Colorectal Dis 2016;31:869-76.
24. de’Angelis N, Portigliotti L, Azoulay D, Brunetti F. Robotic surgery: a step forward in the wide spread of minimally invasive colorectal surgery. J Minim Access Surg 2015;11:285-6.
25. de’Angelis N, Portigliotti L, Brunetti F. Robot-assisted rectal cancer surgery deserves a fair trial. Colorectal Dis 2015;17:824-5.
26. Jayne D, Pigazzi A, Marshall H, Croft J, Corrigan N, et al. Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer: the ROLARR randomized clinical trial. Jama 2017;318:1569-80.
27. Liao G, Zhao Z, Deng H, Li X. Comparison of pathological outcomes between robotic rectal cancer surgery and laparoscopic rectal cancer surgery: A meta-analysis based on seven randomized controlled trials. Int J Med Robot 2019;15:e2027.
28. Prete FP, Pezzolla A, Prete F, Testini M, Marzaioli R, et al. Robotic versus laparoscopic minimally invasive surgery for rectal cancer: a systematic review and meta-analysis of randomized controlled trials. Ann Surg 2018;267:1034-46.
29. Jones K, Qassem MG, Sains P, Baig MK, Sajid MS. Robotic total meso-rectal excision for rectal cancer: a systematic review following the publication of the ROLARR trial. World J Gastrointest Oncol 2018;10:449-64.
30. Rausa E, Bianco F, Kelly ME, Aiolfi A, Petrelli F, et al. Systemic review and network meta-analysis comparing minimal surgical techniques for rectal cancer: quality of total mesorectum excision, pathological, surgical, and oncological outcomes. J Surg Oncol 2019;119:987-98.
32. George EI, Brand TC, LaPorta A, Marescaux J, Satava RM. Origins of robotic surgery: from skepticism to standard of care. JSLS 2018;22:e2018.00039.
33. Bargar WL, Bauer A, Borner M. Primary and revision total hip replacement using the robodoc system. Clin Orthop Relat Res 1998:82-91.
34. Harris SJ, Arambula-Cosio F, Mei Q, Hibberd RD, Davies BL, et al. The probot--an active robot for prostate resection. Proc Inst Mech Eng H 1997;211:317-25.
36. Kraft BM, Jager C, Kraft K, Leibl BJ, Bittner R. The AESOP robot system in laparoscopic surgery: increased risk or advantage for surgeon and patient? Surg Endosc 2004;18:1216-23.
39. Gorpas D, Phipps J, Bec J, Ma D, Dochow S, et al. Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients. Sci Rep 2019;9:1187.
40. Atallah S, Parra-Davila E, Melani AGF, Romagnolo LG, Larach SW, et al. Robotic-assisted stereotactic real-time navigation: initial clinical experience and feasibility for rectal cancer surgery. Tech Coloproctol 2019;23:53-63.
41. Porpiglia F, Checcucci E, Amparore D, Autorino R, Piana A, et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D) technology: a radiological and pathological study. BJU Int 2019;123:834-45.
42. Andolfi C, Umanskiy K. Appraisal and current considerations of robotics in colon and rectal surgery. J Laparoendosc Adv Surg Tech A 2019;29:152-8.
43. Huang CW, Yeh YS, Ma CJ, Choy TK, Huang MY, et al. Robotic colorectal surgery for laparoscopic surgeons with limited experience: preliminary experiences for 40 consecutive cases at a single medical center. BMC Surg 2015;15:73.
44. Jimenez-Rodriguez RM, Rubio-Dorado-Manzanares M, Diaz-Pavon JM, Reyes-Diaz ML, Vazquez-Monchul JM, et al. Learning curve in robotic rectal cancer surgery: current state of affairs. Int J Colorectal Dis 2016;31:1807-15.
45. Odermatt M, Ahmed J, Panteleimonitis S, Khan J, Parvaiz A. Prior experience in laparoscopic rectal surgery can minimise the learning curve for robotic rectal resections: a cumulative sum analysis. Surg Endosc 2017;31:4067-76.
46. Foo CC, Law WL. The learning curve of robotic-assisted low rectal resection of a novice rectal surgeon. World J Surg 2016;40:456-62.
47. Mohd Azman ZA, Kim SH. A review on robotic surgery in rectal cancer. Transl Gastroenterol Hepatol 2016;1:5.
48. Duchalais E, Machairas N, Kelley SR, Landmann RG, Merchea A, et al. Does prolonged operative time impact postoperative morbidity in patients undergoing robotic-assisted rectal resection for cancer? Surg Endosc 2018;32:3659-66.
49. Gachabayov M, You K, Kim SH, Yamaguchi T, Jimenez-Rodriguez R, et al. Meta-analysis of the impact of the learning curve in robotic rectal cancer surgery on histopathologic outcomes. Surg Technol Int 2019;34:139-55.
50. Szold A, Bergamaschi R, Broeders I, Dankelman J, Forgione A, et al. European association of endoscopic surgeons (EAES) consensus statement on the use of robotics in general surgery. Surg Endosc 2015;29:253-88.
51. Baek SJ, Kim SH. Robotics in general surgery: an evidence-based review. Asian J Endosc Surg 2014;7:117-23.
52. Zihni AM, Ohu I, Cavallo JA, Cho S, Awad MM. Ergonomic analysis of robot-assisted and traditional laparoscopic procedures. Surg Endosc 2014;28:3379-84.
53. Berguer R, Smith W. An ergonomic comparison of robotic and laparoscopic technique: the influence of surgeon experience and task complexity. J Surg Res 2006;134:87-92.
55. Abiri A, Pensa J, Tao A, Ma J, Juo YY, et al. Multi-Modal haptic feedback for grip force reduction in robotic surgery. Sci Rep 2019;9:5016.
56. Rao PP. Robotic surgery: new robots and finally some real competition! World J Urol 2018;36:537-41.
57. Bertani E, Chiappa A, Biffi R, Bianchi PP, Radice D, et al. Assessing appropriateness for elective colorectal cancer surgery: clinical, oncological, and quality-of-life short-term outcomes employing different treatment approaches. Int J Colorectal Dis 2011;26:1317-27.
58. Baek SJ, Kim SH, Cho JS, Shin JW, Kim J. Robotic versus conventional laparoscopic surgery for rectal cancer: a cost analysis from a single institute in Korea. World J Surg 2012;36:2722-9.
59. Ielpo B, Duran H, Diaz E, Fabra I, Caruso R, et al. Robotic versus laparoscopic surgery for rectal cancer: a comparative study of clinical outcomes and costs. Int J Colorectal Dis 2017;32:1423-9.
60. Kim CW, Baik SH, Roh YH, Kang J, Hur H, et al. Cost-effectiveness of robotic surgery for rectal cancer focusing on short-term outcomes: a propensity score-matching analysis. Medicine (Baltimore) 2015;94:e823.
61. Morelli L, Guadagni S, Lorenzoni V, Di Franco G, Cobuccio L, et al. Robot-assisted versus laparoscopic rectal resection for cancer in a single surgeon’s experience: a cost analysis covering the initial 50 robotic cases with the da Vinci Si. Int J Colorectal Dis 2016;31:1639-48.
62. Biffi R, Luca F, Bianchi PP, Cenciarelli S, Petz W, et al. Dealing with robot-assisted surgery for rectal cancer: Current status and perspectives. World J Gastroenterol 2016;22:546-56.
63. Cleary RK, Mullard AJ, Ferraro J, Regenbogen SE. The cost of conversion in robotic and laparoscopic colorectal surgery. Surg Endosc 2018;32:1515-24.
64. Ohtani H, Maeda K, Nomura S, Shinto O, Mizuyama Y, et al. Meta-analysis of robot-assisted versus laparoscopic surgery for rectal cancer. In Vivo 2018;32:611-23.
65. Lee SH, Lim S, Kim JH, Lee KY. Robotic versus conventional laparoscopic surgery for rectal cancer: systematic review and meta-analysis. Ann Surg Treat Res 2015;89:190-201.
66. Somashekhar SP, Ashwin KR, Rajashekhar J, Zaveri S. Prospective randomized study comparing robotic-assisted surgery with traditional laparotomy for rectal cancer-Indian study. Indian J Surg 2015;77:788-94.
67. Lee L, de Lacy B, Gomez Ruiz M, Liberman AS, Albert MR, et al. A multicenter matched comparison of transanal and robotic total mesorectal excision for mid and low-rectal adenocarcinoma. Ann Surg 2018; doi: 10.1097/SLA.0000000000002862.
68. Yang Y, Wang F, Zhang P, Shi C, Zou Y, et al. Robot-assisted versus conventional laparoscopic surgery for colorectal disease, focusing on rectal cancer: a meta-analysis. Ann Surg Oncol 2012;19:3727-36.
69. Liao G, Li YB, Zhao Z, Li X, Deng H, et al. Robotic-assisted surgery versus open surgery in the treatment of rectal cancer: the current evidence. Sci Rep 2016;6:26981.
70. Li X, Wang T, Yao L, Hu L, Jin P, et al. The safety and effectiveness of robot-assisted versus laparoscopic TME in patients with rectal cancer: A meta-analysis and systematic review. Medicine (Baltimore) 2017;96:e7585.
71. Hopkins MB, Geiger TM, Bethurum AJ, Ford MM, Muldoon RL, et al. Comparing pathologic outcomes for robotic versus laparoscopic surgery in rectal cancer resection: a propensity adjusted analysis of 7616 patients. Surg Endosc 2019; doi: 10.1007/s00464-019-07032-1.
72. Martinez-Perez A, de’Angelis N. Oncologic results of conventional laparoscopic TME: is the intramesorectal plane really acceptable? Tech Coloproctol 2018;22:831-4.
73. Truong A, Lopez N, Fleshner P, Zaghiyan K. Preservation of pathologic outcomes in robotic versus open resection for rectal cancer: can the robot fill the minimally invasive gap? Am Surg 2018;84:1876-81.
74. Owens EA, Henary M, El Fakhri G, Choi HS. Tissue-specific near-infrared fluorescence imaging. Acc Chem Res 2016;49:1731-40.
76. Alander JT, Kaartinen I, Laakso A, Patila T, Spillmann T, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012;2012:940585.
77. Liberale G, Bourgeois P, Larsimont D, Moreau M, Donckier V, et al. Indocyanine green fluorescence-guided surgery after IV injection in metastatic colorectal cancer: a systematic review. Eur J Surg Oncol 2017;43:1656-67.
78. Degett TH, Andersen HS, Gogenur I. Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. Langenbecks Arch Surg 2016;401:767-75.
79. Liberale G, Bohlok A, Bormans A, Bouazza F, Galdon MG, et al. Indocyanine green fluorescence imaging for sentinel lymph node detection in colorectal cancer: A systematic review. Eur J Surg Oncol 2018;44:1301-6.
80. Lieto E, Auricchio A, Cardella F, Mabilia A, Basile N, et al. Fluorescence-guided surgery in the combined treatment of peritoneal carcinomatosis from colorectal cancer: preliminary results and considerations. World J Surg 2018;42:1154-60.
81. Kang CY, Halabi WJ, Chaudhry OO, Nguyen V, Pigazzi A, et al. Risk factors for anastomotic leakage after anterior resection for rectal cancer. JAMA Surg 2013;148:65-71.
82. Vignali A, Gianotti L, Braga M, Radaelli G, Malvezzi L, et al. Altered microperfusion at the rectal stump is predictive for rectal anastomotic leak. Dis Colon Rectum 2000;43:76-82.
83. De Nardi P, Elmore U, Maggi G, Maggiore R, Boni L, et al. Intraoperative angiography with indocyanine green to assess anastomosis perfusion in patients undergoing laparoscopic colorectal resection: results of a multicenter randomized controlled trial. Surg Endosc 2019; doi: 10.1007/s00464-019-06730-0.
84. Jafari MD, Lee KH, Halabi WJ, Mills SD, Carmichael JC, et al. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc 2013;27:3003-8.
85. Kim JC, Lee JL, Park SH. Interpretative guidelines and possible indications for indocyanine green fluorescence imaging in robot-assisted sphincter-saving operations. Dis Colon Rectum 2017;60:376-84.
86. Barabino G, Klein JP, Porcheron J, Grichine A, Coll JL, et al. Intraoperative near-infrared fluorescence imaging using indocyanine green in colorectal carcinomatosis surgery: proof of concept. Eur J Surg Oncol 2016;42:1931-7.
87. Filippello A, Porcheron J, Klein JP, Cottier M, Barabino G. Affinity of Indocyanine green in the detection of colorectal peritoneal carcinomatosis. Surg Innov 2017;24:103-8.
88. Sluiter NR, Vlek SL, Wijsmuller AR, Brandsma HT, de Vet HCW, et al. Narrow-band imaging improves detection of colorectal peritoneal metastases: a clinical study comparing advanced imaging techniques. Ann Surg Oncol 2019;26:156-64.
89. Lee SJ, Sohn DK, Han KS, Kim BC, Hong CW, et al. Preoperative tattooing using indocyanine green in laparoscopic colorectal surgery. Ann Coloproctol 2018;34:206-11.
90. Penna M, Hompes R, Arnold S, Wynn G, Austin R, et al. Transanal total mesorectal excision: international registry results of the first 720 cases. Ann Surg 2017;266:111-7.
91. Roodbeen SX, Penna M, Mackenzie H, Kusters M, Slater A, et al. Transanal total mesorectal excision (TaTME) versus laparoscopic TME for MRI-defined low rectal cancer: a propensity score-matched analysis of oncological outcomes. Surg Endosc 2019;33:2459-67.
92. Gomez Ruiz M, Parra IM, Palazuelos CM, Martin JA, Fernandez CC, et al. Robotic-assisted laparoscopic transanal total mesorectal excision for rectal cancer: a prospective pilot study. Dis Colon Rectum 2015;58:145-53.
93. Protyniak B, Jorden J, Farmer R. Multiquadrant robotic colorectal surgery: the da Vinci Xi vs Si comparison. J Robot Surg 2018;12:67-74.