REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7-30.

2. Jemal A, Siegel R, Ward E, Murray T, Xu J, et al. Cancer statistics, 2007. CA Cancer J Clin 2007;57:43-66.

3. Murthy R, Kamat P, Nuñez R, Salem R. Radioembolization of yttrium-90 microspheres for hepatic malignancy. Semin Intervent Radiol 2008;25:48-57.

4. Abdalla EK, Vauthey JN, Ellis LM, Ellis V, Pollock R, et al. Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 2004;239:818-25.

5. Fong Y, Cohen AM, Fortner JG, Enker WE, Turnbull AD, et al. Liver resection for colorectal metastases. J Clin Oncol 1997;15:938-46.

6. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg 2009;22:191-7.

7. Weiss L. Fundamental aspects of metastasis. New York: American Elsevier Pub. Co; 1976.

8. Hellinger MD, Santiago CA. Reoperation for recurrent colorectal cancer. Clin Colon Rectal Surg 2006;19:228-36.

9. Janout V, Kollárová H. Epidemiology of colorectal cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2001;145:5-10.

10. Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006;12:895-904.

11. Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer 2011;12:39-50.

12. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep 2012;64:1020-37.

13. Agnihotri SA, Aminabhavi TM. Novel interpenetrating network chitosan-poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine. Int J Pharm 2006;324:103-15.

14. Sharma H. Role of external beam radiation therapy in management of hepatocellular carcinoma. J Clin Exp Hepatol 2014;4:S122-5.

15. dos Santos Giuberti C, de Oliveira Reis EC, Ribeiro Rocha TG, Leite EA, Lacerda RG, et al. Study of the pilot production process of long-circulating and pH-sensitive liposomes containing cisplatin. J Liposome Res 2011;21:60-9.

16. Mijović J, Ristić S, Kenny J. Dynamics of six generations of PAMAM dendrimers as studied by dielectric relaxation spectroscopy. Macromolecules 2007;40:5212-21.

17. Park J, Fong PM, Lu J, Russell KS, Booth CJ, et al. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine 2009;5:410-8.

18. Rejinold NS, Sreerekha PR, Chennazhi KP, Nair SV, Jayakumar R. Jayakumar. Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide) nanocarrier for curcumin drug delivery. Int J Biol Macromol 2011;49:161-72.

19. Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007;2:16.

20. van den Hoven JM, Van Tomme SR, Metselaar JM, Nuijen B, Beijnen JH, et al. Liposomal drug formulations in the treatment of rheumatoid arthritis. Mol Pharm 2011;8:1002-15.

21. Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 2012;7:144.

22. Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K, et al. Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int 2014;2014:498420.

23. Heiligtag FJ, Niederberger M. The fascinating world of nanoparticle research. Mater Today 2013;16:262-71.

24. Angioletti-Uberti S. Theory, simulations and the design of functionalized nanoparticles for biomedical applications: a soft matter perspective. Npj Comput Mater 2017;3:48.

25. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Available from: https://www.sciencedirect.com/science/article/pii/S1878535217300990. [Last accessed on 14 Dec 2018].

26. Laroui H, Wilson DS, Dalmasso G, Salaita K, Murthy N, et al. Nanomedicine in GI. Am J Physiol Gastrointest Liver Physiol 2011;300:G371-83.

27. Laroui H, Dalmasso G, Nguyen HT, Yan Y, Sitaraman SV, et al. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology 2010;138:843-53.

28. Sajeesh S, Bouchemal K, Sharma CP, Vauthier C. Surface-functionalized polymethacrylic acid based hydrogel microparticles for oral drug delivery. Eur J Pharm Biopharm 2010;74:209-18.

29. Hu Z, Mawatari S, Shibata N, Takada K, Yoshikawa H, et al. Application of a biomagnetic measurement system (BMS) to the evaluation of gastrointestinal transit of intestinal pressure-controlled colon delivery capsules (PCDCs) in human subjects. Pharm Res 2000;17:160-7.

30. Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, et al. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res 2009;69:6200-7.

31. Fang C, Bhattarai N, Sun C, Zhang M. Functionalized nanoparticles with long-term stability in biological media. Small 2009;5:1637-41.

32. Yang L, Mao H, Cao Z, Wang YA, Peng X, et al. Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology 2009;136:1514-25.

33. Kountouras J, Chatzopoulos D, Zavos C. Reactive oxygen metabolites and upper gastrointestinal diseases. Hepatogastroenterology 2001;48:743-51.

34. Mathew J, Joy J, George SC. Potential applications of nanotechnology in transportation: a review. Available from: https://ac.els-cdn.com/S1018364717310868/1-s2.0-S1018364717310868-main.pdf?_tid=33a4b98f-f2f2-4c7e-977d-ec3172ae82e7&acdnat=1544752051_6aaa641ed07e4ffc5257e487bd9f5c12. [Last accessed on 14 Dec 2018].

35. Ealias AM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 2017;263:032019.

36. Solvang S, Finholt P. Effect of tablet processing and formulation factors on dissolution rate of the active ingredient in human gastric juice. J Pharm Sci 1970;59:49-52.

37. Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev 2001;46:75-87.

38. Batlle X, Labarta A. Finite-size effects in fine particles: magnetic and transport properties. Available from: http://iopscience.iop.org/article/10.1088/0022-3727/35/6/201/pdf. [Last accessed on 14 Dec 2018].

39. Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev 2006;35:583-92.

40. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004;303:1818-22.

41. Netti PA, Roberge S, Boucher Y, Baxter LT, Jain RK. Effect of transvascular fluid exchange on pressure-flow relationship in tumors: a proposed mechanism for tumor blood flow heterogeneity. Microvasc Res 1996;52:27-46.

42. Gullotti E, Yeo Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 2009;6:1041-51.

43. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387-92.

44. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271-84.

45. Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 2004;83:97-111.

46. Gryparis EC, Hatziapostolou M, Papadimitriou E, Avgoustakis K. Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. Eur J Pharm Biopharm 2007;67:1-8.

47. Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res 2008;25:55-71.

48. Hong RL, Huang CJ, Tseng YL, Pang VF, Chen ST, et al. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial? Clin Cancer Res 1999;5:3645-52.

49. Kaasgaard T, Mouritsen OG, Jørgensen K. Screening effect of PEG on avidin binding to liposome surface receptors. Int J Pharm 2001;214:63-5.

50. Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 2007;15:457-64.

51. Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 2007;9:E128-47.

52. Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93-102.

53. Howard MD, Jay M, Dziubla TD, Lu X. PEGylation of nanocarrier drug delivery systems: state of the art. J Biomed Nanotechnol 2008;4:133-48.

54. Kovacevic A, Savic S, Vuleta G, Müller RH, Keck CM. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. Int J Pharm 2011;406:163-72.

55. Cho M, Cho WS, Choi M, Kim SJ, Han BS, et al. The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol Lett 2009;189:177-83.

56. Brennan FR, Shaw L, Wing MG, Robinson C. Preclinical safety testing of biotechnology-derived pharmaceuticals: understanding the issues and addressing the challenges. Mol Biotechnol 2004;27:59-74.

57. Weinberg WC, Frazier-Jessen MR, Wu WJ, Weir A, Hartsough M, et al. Development and regulation of monoclonal antibody products: challenges and opportunities. Cancer Metastasis Rev 2005;24:569-84.

58. Vigor KL, Kyrtatos PG, Minogue S, Al-Jamal KT, Kogelberg H, et al. Nanoparticles functionalized with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials 2010;31:1307-15.

59. Tiernan JP, Ingram N, Marston G, Perry SL, Rushworth JV, et al. CEA-targeted nanoparticles allow specific in vivo fluorescent imaging of colorectal cancer models. Nanomedicine (Lond) 2015;10:1223-31.

60. Abdelghany SM, Schmid D, Deacon J, Jaworski J, Fay F, et al. Enhanced antitumor activity of the photosensitizer meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles. Biomacromolecules 2013;14:302-10.

61. Fay F, McLaughlin KM, Small DM, Fennell DA, Johnston PG, et al. Conatumumab (AMG 655) coated nanoparticles for targeted pro-apoptotic drug delivery. Biomaterials 2011;32:8645-53.

62. da Paz MC, Santos Mde F, Santos CM, da Silva SW, de Souza LB, et al. Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer. Int J Nanomedicine 2012;7:5271-82.

63. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965;13:238-52.

64. Abreu AS, Castanheira EM, Queiroz MJ, Ferreira PM, Vale-Silva LA, et al. Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate. Nanoscale Res Lett 2011;6:482.

65. Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm 2009;379:201-9.

66. Andresen TL, Jensen SS, Jørgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 2005;44:68-97.

67. Silva R, Ferreira H, Cavaco-Paulo A. Sonoproduction of liposomes and protein particles as templates for delivery purposes. Biomacromolecules 2011;12:3353-68.

68. Patil YP, Jadhav S. Novel methods for liposome preparation. Chem Phys Lipids 2014;177:8-18.

69. Harashima H, Sakata K, Funato K, Kiwada H. Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm Res 1994;11:402-6.

70. Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics 2013;5:542-69.

71. Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol 2014;32:32-45.

72. Barenholz Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J Control Release 2012;160:117-34.

73. Rivera E. Liposomal anthracyclines in metastatic breast cancer: clinical update. Oncologist 2003;8 Suppl 2:3-9.

74. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013;65:36-48.

75. Lam R, Ho D. Nanodiamonds as vehicles for systemic and localized drug delivery. Expert Opin Drug Deliv 2009;6:883-95.

76. Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: principles and practice. Br J Cancer 2008;99:392-7.

77. Stang J, Haynes M, Carson P, Moghaddam M. A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Trans Biomed Eng 2012;59:2431-8.

78. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 2003;100:13549-54.

79. Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005;5:709-11.

80. Damascelli B, Cantù G, Mattavelli F, Tamplenizza P, Bidoli P, et al. Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-007): phase I study of patients with squamous cell carcinoma of the head and neck and anal canal: preliminary evidence of clinical activity. Cancer 2001;92:2592-602.

81. Zhang L, Chen H, Wang L, Liu T, Yeh J, et al. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy. Nanotechnol Sci Appl 2010;3:159-70.

82. Bai Y, Teng B, Chen S, Chang Y, Li Z. Preparation of magnetite nanoparticles coated with an amphiphilic block copolymer: a potential drug carrier with a core-shell-corona structure for hydrophobic drug delivery. Macromol Rapid Commun 2006;27:2107-112.

83. Bajpai AK, Gupta R. Magnetically mediated release of ciprofloxacin from polyvinyl alcohol based superparamagnetic nanocomposites. J Mater Sci Mater Med 2011;22:357-69.

84. Arias JL, López-Viota M, Delgado AV, Ruiz MA. Iron/ethylcellulose (core/shell) nanoplatform loaded with 5-fluorouracil for cancer targeting. Colloids Surf B Biointerfaces 2010;77:111-6.

85. Gaihre B, Khil MS, Lee DR, Kim HY. Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int J Pharm 2009;365:180-9.

86. Hua MY, Liu HL, Yang HW, Chen PY, Tsai RY, et al. The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials 2011;32:516-27.

87. Hua MY, Yang HW, Chuang CK, Tsai RY, Chen WJ, et al. Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer. Biomaterials 2010;31:7355-63.

88. Jingting C, Huining L, Yi Z. Preparation and characterization of magnetic nanoparticles containing Fe(3)O(4)-dextran-anti-β-human chorionic gonadotropin, a new generation choriocarcinoma-specific gene vector. Int J Nanomedicine 2011;6:285-94.

89. Kempe M, Kempe H, Snowball I, Wallén R, Arza CR, et al. The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials 2010;31:9499-510.

90. Losic D, Yu Y, Aw MS, Simovic S, Thierry B, et al. Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies. Chem Commun (Camb) 2010;46:6323-5.

91. Tong Q, Li H, Li W, Chen H, Shu X, et al. In vitro and in vivo anti-tumor effects of gemcitabine loaded with a new drug delivery system. J Nanosci Nanotechnol 2011;11:3651-8.

92. Wu W, Chen B, Cheng J, Wang J, Xu W, et al. Biocompatibility of Fe3O4/DNR magnetic nanoparticles in the treatment of hematologic malignancies. Int J Nanomedicine 2010;5:1079-84.

93. Yang J, Park SB, Yoon HG, Huh YM, Haam S. Preparation of poly epsilon-caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int J Pharm 2006;324:185-90.

94. Wáng YX, Idée JM., Idée. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg 2017;7:88-122.

95. Ting G, Chang CH, Wang HE, Lee TW. Nanotargeted radionuclides for cancer nuclear imaging and internal radiotherapy. J Biomed Biotechnol 2010; doi: 10.1155/2010/953537.

96. Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today (Kidlington) 2016;19:157-68.

97. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003;348:2491-9.

98. Tassa C, Shaw SY, Weissleder R. Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 2011;44:842-52.

99. Jedlovszky-Hajdú A, Bombelli FB, Monopoli MP, Tombácz E, Dawson KA. Surface coatings shape the protein corona of SPIONs with relevance to their application in vivo. Langmuir 2012;28:14983-91.

100. Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater 2014;13:125-38.

Mini-invasive Surgery
ISSN 2574-1225 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/