1. Wu, M.; Hu, X.; Zheng, W.; Chen, L.; Zhang, Q. Recent advances in porous carbon nanosheets for high-performance metal-ion capacitors. Chem. Eng. J. 2023, 466, 143077.
2. Nagamuthu, S.; Zhang, Y.; Xu, Y.; et al. Non-lithium-based metal ion capacitors: recent advances and perspectives. J. Mater. Chem. A. 2022, 10, 357-78.
3. Xu, Y.; Zhang, C.; Zhou, M.; et al. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.
4. Wu, Y.; Sun, Y.; Tong, Y.; et al. Recent advances in potassium-ion hybrid capacitors: electrode materials, storage mechanisms and performance evaluation. Energy. Storage. Mater. 2021, 41, 108-32.
5. Cheng, L.; Quan, J.; Li, H. Recent advances in antimony-based anode materials for potassium-ion batteries: material selection, structural design and storage mechanisms. Chinese. Chem. Lett. 2024, 36, 110685.
6. Li, X.; Chen, M.; Wang, L.; et al. Nitrogen-doped carbon nanotubes as an anode for a highly robust potassium-ion hybrid capacitor. Nanoscale. Horiz. 2020, 5, 1586-95.
7. Jian, Z.; Luo, W.; Ji, X. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566-9.
8. Cai, P.; Wang, K.; Wang, T.; et al. Comprehensive insights into potassium-ion capacitors: mechanisms, materials, devices and future perspectives. Adv. Energy. Mater. 2024, 14, 2401183.
9. Ma, J.; Gu, J.; Li, B.; Yang, S. Facile fabrication of 2D stanene nanosheets via a dealloying strategy for potassium storage. Chem. Commun. 2019, 55, 3983-6.
10. Li, J.; Rui, B.; Wei, W.; et al. Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. J. Power. Sources. 2020, 449, 227481.
11. Chong, S.; Sun, L.; Shu, C.; et al. Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano. Energy. 2019, 63, 103868.
12. Li, D.; Zhang, Y.; Sun, Q.; et al. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy. Storage. Mater. 2019, 23, 367-74.
13. Dong, S.; Li, Z.; Xing, Z.; Wu, X.; Ji, X.; Zhang, X. Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS. Appl. Mater. Interfaces. 2018, 10, 15542-7.
14. Jiang, Y.; Lao, J.; Dai, G.; Ye, Z. Advanced insights on MXenes: categories, properties, synthesis, and applications in alkali metal ion batteries. ACS. Nano. 2024, 18, 14050-84.
15. Lu, C.; Sun, Z.; Yu, L.; et al. Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassiumāion batteries. Adv. Energy. Mater. 2020, 10, 2001161.
16. Liu, Y.; Lu, Y. X.; Xu, Y. S.; et al. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, e2000505.
17. Li, C.; Zhang, X.; Lv, Z.; et al. Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors. Chem. Eng. J. 2021, 414, 128781.
18. Xu, Z.; Wu, M.; Chen, Z.; et al. Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 2019, 6, 1802272.
19. Li, Z.; Shin, W.; Chen, Y.; Neuefeind, J. C.; Greaney, P. A.; Ji, X. Low temperature pyrolyzed soft carbon as high capacity K-ion anode. ACS. Appl. Energy. Mater. 2019, 2, 4053-8.
20. Liu, Q.; Han, F.; Zhou, J.; et al. Boosting the potassium-ion storage performance in soft carbon anodes by the synergistic effect of optimized molten salt medium and N/S dual-doping. ACS. Appl. Mater. Interfaces. 2020, 12, 20838-48.
21. Bi, H.; He, X.; Yang, L.; Li, H.; Jin, B.; Qiu, J. Interconnected carbon nanocapsules with high N/S co-doping as stable and high-capacity potassium-ion battery anode. J. Energy. Chem. 2022, 66, 195-204.
22. Ruan, J.; Wu, X.; Wang, Y.; et al. Nitrogen-doped hollow carbon nanospheres towards the application of potassium ion storage. J. Mater. Chem. A. 2019, 7, 19305-15.
23. Luo, H.; Chen, M.; Cao, J.; et al. Cocoon silk-derived, hierarchically porous carbon as anode for highly robust potassium-ion hybrid capacitors. Nanomicro. Lett. 2020, 12, 113.
24. Poudel, M. B.; Kim, A. R.; Ramakrishan, S.; et al. Integrating the essence of metal organic framework-derived ZnCoTe-N-C/MoS2 cathode and ZnCo-NPS-N-CNT as anode for high-energy density hybrid supercapacitors. Compos. Part. B. Eng. 2022, 247, 110339.
25. Li, X.; Sun, N.; Tian, X.; et al. Electrospun coal liquefaction residues/polyacrylonitrile composite carbon nanofiber nonwoven fabrics as high-performance electrodes for lithium/potassium batteries. Energy. Fuels. 2020, 34, 2445-51.
26. Zhang, Y.; Wang, G.; Yue, P.; et al. Construction of low-softening-point coal pitch derived carbon nanofiber films as self-standing anodes toward sodium dual-ion batteries. Adv. Funct. Mater. 2025, 35, 2414761.
27. Wang, G.; Wang, X.; Sun, J.; Zhang, Y.; Hou, L.; Yuan, C. Porous carbon nanofibers derived from low-softening-point coal pitch towards all-carbon potassium ion hybrid capacitors. Rare. Met. 2022, 41, 3706-16.
28. Wang, B.; Zhang, Z.; Yuan, F.; et al. An insight into the initial coulombic efficiency of carbon-based anode materials for potassium-ion batteries. Chem. Eng. J. 2022, 428, 131093.
29. Ramakrishnan, S.; Karuppannan, M.; Vinothkannan, M.; Ramachandran, K.; Kwon, O. J.; Yoo, D. J. Ultrafine Pt nanoparticles stabilized by MoS2/N-doped reduced graphene oxide as a durable electrocatalyst for alcohol oxidation and oxygen reduction reactions. ACS. Appl. Mater. Interfaces. 2019, 11, 12504-15.
30. Zhang, W.; Liu, Y.; Guo, Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.
31. Tao, L.; Yang, Y.; Wang, H.; et al. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy. Storage. Mater. 2020, 27, 212-25.
32. Cheng, C.; Wu, D.; Gong, T.; et al. Internal and external cultivation design of zero-strain columbite-structured MNb2O6 toward lithium-ion capacitors as competitive anodes. Adv. Energy. Mater. 2023, 13, 2302107.
33. Xu, K.; Ding, S. P.; Jow, T. R. Toward reliable values of electrochemical stability limits for electrolytes. J. Electrochem. Soc. 1999, 146, 4172-8.
34. Yao, Y.; Xu, R.; Chen, M.; et al. Encapsulation of SeS2 into nitrogen-doped free-standing carbon nanofiber film enabling long cycle life and high energy density K-SeS2 battery. ACS. Nano. 2019, 13, 4695-704.
35. Shen, Y.; Huang, C.; Li, Y.; et al. Enhanced sodium and potassium ions storage of soft carbon by a S/O co-doped strategy. Electrochim. Acta. 2021, 367, 137526.
36. Wang, C.; Yang, D.; Zhang, W.; Qin, Y.; Qiu, X.; Li, Z. Engineering of edge nitrogen dopant in carbon nanosheet framework for fast and stable potassium-ion storage. Carbon. Res. 2024, 3, 20.
37. Wei, X.; Yi, Y.; Yuan, X.; et al. Intrinsic carbon structure modification overcomes the challenge of potassium bond chemistry. Energy. Environ. Sci. 2024, 17, 2968-3003.
38. Hou, L.; Chen, Z.; Zhao, Z.; Sun, X.; Zhang, J.; Yuan, C. Universal FeCl3-activating strategy for green and scalable fabrication of sustainable biomass-derived hierarchical porous nitrogen-doped carbons for electrochemical supercapacitors. ACS. Appl. Energy. Mater. 2019, 2, 548-57.
39. Huang, R.; Zhang, X.; Qu, Z.; et al. Defects and sulfur-doping design of porous carbon spheres for high-capacity potassium-ion storage. J. Mater. Chem. A. 2022, 10, 682-9.
40. Duan, M.; Zhu, F.; Zhao, G.; et al. Nitrogen and sulfur co-doped mesoporous carbon derived from ionic liquid as high-performance anode material for sodium ion batteries. Microporous. Mesoporous. Mater. 2020, 306, 110433.
41. Xie, Z.; Xia, J.; Qiu, D.; et al. Rich-phosphorus/nitrogen co-doped carbon for boosting the kinetics of potassium-ion hybrid capacitors. Sustain. Energy. Fuels. 2021, 6, 162-9.
42. Yin, R.; Wang, K.; Han, B.; et al. Structural evaluation of coal-tar-pitch-based carbon materials and their Na+ storage properties. Coatings 2021, 11, 948.
43. Liu, Y.; Wang, S.; Sun, X.; et al. Sub-nanoscale engineering of MoO2 clusters for enhanced sodium storage. Energy. Environ. Mater. 2023, 6, e12263.
44. Zhao, J.; Yang, S.; Zhang, P.; Dai, S. Sulphur as medium: directly converting pitch into porous carbon. Fuel 2021, 286, 119393.
45. Cai, P.; Momen, R.; Tian, Y.; et al. Advanced pre-diagnosis method of biomass intermediates toward high energy dual-carbon potassium-ion capacitor. Adv. Energy. Mater. 2022, 12, 2103221.
46. Hu, X.; Liu, Y.; Chen, J.; Yi, L.; Zhan, H.; Wen, Z. Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy. Mater. 2019, 9, 1901533.
47. Lotfabad E, Kalisvaart P, Kohandehghan A, Karpuzov D, Mitlin D. Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li. J. Mater. Chem. A. 2014, 2, 19685-95.
48. Ning, G.; Ma, X.; Zhu, X.; et al. Enhancing the Li storage capacity and initial coulombic efficiency for porous carbons by sulfur doping. ACS. Appl. Mater. Interfaces. 2014, 6, 15950-8.
49. Tang, H.; Yan, D.; Lu, T.; Pan, L. Sulfur-doped carbon spheres with hierarchical micro/mesopores as anode materials for sodium-ion batteries. Electrochim. Acta. 2017, 241, 63-72.
50. Xiao, N.; Zhang, X.; Liu, C.; Wang, Y.; Li, H.; Qiu, J. Coal-based carbon anodes for high-performance potassium-ion batteries. Carbon 2019, 147, 574-81.
51. Li, Q.; Wang, T.; Shu, T.; et al. Controllable construction of hierarchically porous carbon composite of nanosheet network for advanced dual-carbon potassium-ion capacitors. J. Colloid. Interface. Sci. 2022, 621, 169-79.
52. Zeng, S.; Zhou, X.; Wang, B.; et al. Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries. J. Mater. Chem. A. 2019, 7, 15774-81.
53. Liu, C.; Zheng, H.; Yu, K.; et al. Direct synthesis of P/O-enriched pitch-based carbon microspheres from a coordinated emulsification and pre-oxidation towards high-rate potassium-ion batteries. Carbon 2022, 194, 176-84.
54. Xu, J.; Dou, S.; Zhou, W.; et al. Scalable waste-plastic-derived carbon nanosheets with high contents of inbuilt nitrogen/sulfur sites for high performance potassium-ion hybrid capacitors. Nano. Energy. 2022, 95, 107015.
55. Wang, M.; Zhu, Y.; Zhang, Y.; et al. Isotropic high softening point petroleum pitch-based carbon as anode for high-performance potassium-ion batteries. J. Power. Sources. 2021, 481, 228902.
56. Shen, C.; Yuan, K.; Tian, T.; et al. Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 5015-21.
57. Sun, Y.; Wang, H.; Wei, W.; et al. Sulfur-rich graphene nanoboxes with ultra-high potassiation capacity at fast charge: storage mechanisms and device performance. ACS. Nano. 2021, 15, 1652-65.
58. Zhang, C.; Han, F.; Wang, F.; et al. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy. Storage. Mater. 2020, 24, 208-19.
59. Huang, N.; Tang, C.; Jiang, H.; Sun, J.; Du, A.; Zhang, H. Interfacial growth of N,S-codoped mesoporous carbon onto biomass-derived carbon for superior potassium-ion storage. Nano. Res. 2024, 17, 2619-27.
60. Yang, W.; Zhou, J.; Wang, S.; et al. A three-dimensional carbon framework constructed by N/S Co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS. Energy. Lett. 2020, 5, 1653-61.
61. Lv, C.; Xu, W.; Liu, H.; et al. 3D sulfur and nitrogen codoped carbon nanofiber aerogels with optimized electronic structure and enlarged interlayer spacing boost potassium-ion storage. Small 2019, 15, e1900816.
62. Sun, X.; Zhang, X.; Wang, K.; et al. Determination strategy of stable electrochemical operating voltage window for practical lithium-ion capacitors. Electrochim. Acta. 2022, 428, 140972.
63. Gao, Q.; Li, T.; Liu, C.; et al. Hierarchically porous N-doped carbon framework with enlarged interlayer spacing as dual-carbon electrodes for potassium ion hybrid capacitors. Carb. Neutral. 2023, 2, 57.
64. Qiu, D.; Guan, J.; Li, M.; et al. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 2019, 29, 1903496.
65. Cao, J.; Xu, H.; Zhong, J.; et al. Dual-carbon electrode-based high-energy-density potassium-ion hybrid capacitor. ACS. Appl. Mater. Interfaces. 2021, 13, 8497-506.
66. Fan, L.; Lin, K.; Wang, J.; Ma, R.; Lu, B. A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 2018, 30, e1800804.
67. Luo, Y.; Liu, L.; Lei, K.; et al. A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate. Chem. Sci. 2019, 10, 2048-52.
68. Zhao, S.; Yan, K.; Liang, J.; et al. Phosphorus and oxygen dual-doped porous carbon spheres with enhanced reaction kinetics as anode materials for high-performance potassium-ion hybrid capacitors. Adv. Funct. Mater. 2021, 31, 2102060.
69. Zhang, H.; Fang, L.; Guo, Y.; et al. Nitrogen-sulfur co-doped ZIF-8-derived carbon materials for supercapacitors with low self-discharge. J. Energy. Storage. 2024, 80, 110138.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.