Articles
-
The metabolism of novel flame retardants and the internal exposure and toxicity of their major metabolites in fauna - a review
J Environ Expo Assess 2023;2:10. DOI: 10.20517/jeea.2023.08AbstractThe worldwide production and usage of novel flame retardants increase their exposure to non-human fauna. ... MOREThe worldwide production and usage of novel flame retardants increase their exposure to non-human fauna. Animals can accumulate and metabolize these novel flame retardants including novel halogenated flame retardants (NHFRs) and organophosphate flame retardants (OPFRs), which is of considerable significance to their internal exposure and final toxicities. In this review, recent studies on the metabolic pathways and kinetics of the two classes of novel flame retardants and the internal exposure and toxicity of their major metabolites are summarized. The results showed that the metabolic pathways of OPFRs were similar among various animals, while the metabolism kinetics (or toxicokinetics) were variable among species. O-dealkylation, hydroxylation and phase II conjunction were the most likely pathways for OPFRs. NHFRs might be metabolized through the pathways of debromination, hydroxylation, dealkylation, and phase II conjunction. We also suggested that di-alkyl phosphates (DAPs) and hydroxylated OPFRs (OH-OPFRs) were the predominant metabolites in the animal body. DAPs, 2,3,4,5-tetrabromobenzoic acid (TBBA) and 2-ethylhexyl tetrabromophthalate (TBMEHP) have relatively higher internal exposure levels in fauna, which might attribute to their high conversion rate and stability in the body. The metabolism of OPFRs and NHFRs in non-human animals may eliminate their acute toxicity but not their chronic toxicities (especially for endocrine-disrupting effects), which suggests attention should also be paid to the major metabolites. Based on the issues mentioned above, we proposed that the metabolic processes in multitrophic organisms, the transfer of major metabolites across the food web, and the co-exposure of the novel flame retardants and their metabolites in fauna are worth studying in the future. LESS Full articleReview|Published on: 27 Apr 2023 -
Arsenic and arsenic species in MOD, POD, and disposable POD electronic cigarette aerosols: a pilot study
J Environ Expo Assess 2023;2:9. DOI: 10.20517/jeea.2023.03AbstractThe growing popularity of electronic cigarettes (e-cig) has raised questions about the health effects of ... MOREThe growing popularity of electronic cigarettes (e-cig) has raised questions about the health effects of e-cig use, or vaping. Previous studies have reported on the potential of exposure to arsenic (As) and other metal(loid)s from vaping, but little is known about the speciation of As in the inhaled aerosols, an important determinant of toxicity. Inorganic As (iAs) species AsIII and AsV are generally more hazardous than organic As species. This study aimed to investigate total and speciated As in condensed aerosols of popular commercial e-cig products and to compare them with regulatory exposure limits. High-performance liquid chromatography and inductively-coupled plasma mass spectrometry were used for As measurements of e-cig aerosol condensates. The analysis included samples from three types of e-cig devices: MODs, PODs, and disposable pod (d-POD) devices. iAs species were identified in all 23 analyzed e-cig aerosol condensate samples, with the highest aerosol concentrations measured in MODs. The geometric mean (range) iAs concentration of 2.3 (1.2-5.1) µg/m3 observed in MOD devices in this study exceeded the recommended exposure limit of 2 µg/m3 for 15-min or shorter inhalation exposures set by the United States National Institute for Occupational Safety and Health. These preliminary results suggest that iAs species are present in inhalable aerosols of some MOD products at levels above regulatory limits for iAs inhalation. LESS Full articleResearch Article|Published on: 27 Apr 2023 -
Health risk assessment of BTEX exposure at roadside and on-road traveling route in Bangkok Metropolitan Region
J Environ Expo Assess 2023;2:8. DOI: 10.20517/jeea.2022.38AbstractExposure to high levels of benzene, toluene, ethylbenzene, and xylenes (BTEX) poses health risks in ... MOREExposure to high levels of benzene, toluene, ethylbenzene, and xylenes (BTEX) poses health risks in high-traffic urban areas. BTEX exposure at two microenvironments, the roadside and along the traveling routes, within urban and suburban areas of the Bangkok Metropolitan Region was examined to assess cancer and noncancer risks. The lifetime cancer risk (LCR) for benzene and noncancer hazard index (HI) for all BTEX compounds were evaluated for adult male and female groups (drivers, passengers, and street vendors) in two scenarios: average case and worst case. With the assumption of negligible exposure outside the two considered microenvironments, the pickup drivers had the highest LCR and HI. Higher exposure risks were found in urban areas than in the suburbs and among men than females. Higher toluene levels were found at all monitoring sites in two microenvironments, but benzene was the most important in causing noncancer risk. The HI for all target groups ranged from 8.5E-03 to 4.0E-01, indicating a low noncancer risk from BTEX exposure (HI < 1). The LCR caused by benzene exposure ranged from 1.7E-06 to 7.2E-05, which is higher than the United States EPA most health-protective limit (1E-06). Further research should include other microenvironments by assessing the 24-hour exposure of all considered groups. LESS Full articleResearch Article|Published on: 27 Feb 2023 -
Occurrence and distribution of several endocrine-disrupting chemicals in a chemical park: exploring the health risks of multiple pollutants
J Environ Expo Assess 2023;2:7. DOI: 10.20517/jeea.2022.34AbstractTriclosan (TCS), triclocarban (TCC), parabens, bisphenols (BPAs), tetrabromobisphenol A and its alternatives (TBBPAs), and phthalate ... MORETriclosan (TCS), triclocarban (TCC), parabens, bisphenols (BPAs), tetrabromobisphenol A and its alternatives (TBBPAs), and phthalate esters (PAEs) are typical endocrine-disrupting chemicals (EDCs), which have received increasing attention due to their potential adverse effects on ecological and human health. Human exposure to these EDCs is widespread. However, data regarding the distribution and related health risks of multiple EDCs in chemical parks are relatively scarce. In this study, 28 EDCs were determined in surface soil, sediment, and sludge samples collected from the Yangkou Chemical Industrial Park (Jiangsu, China). With the exception of TBBPAs, the distributions of Σ(TCS + TCC), Σ6parabens, Σ8BPAs, and Σ9PAEs in environmental media were as follows: sludge > sediment ≥ soil. No obvious differences were found regarding the concentrations of Σ9PAEs within the soil samples. Higher levels of Σ(TCS + TCC) (186 μg kg-1 dw) and Σ3TBBPAs (154 μg kg-1 dw) were found in the soil near a chemical manufacturer and the main sewage outlet of a wastewater treatment plant, respectively. The non-carcinogenic risks of EDCs from soil were estimated, and the risk levels were found to be a few orders of magnitude lower than the reported reference dose (RfD) values. The hazard indexes for all the samples were smaller than one, suggesting that the chemical industrial park posed a low risk to the workers. Additionally, the mass inventories of Σ(TCS + TCC), Σ6parabens, Σ8BPAs, Σ3TBBPAs, and Σ9PAEs were estimated to be 507, 90.6, 133, 20.7, and 1090 kg, respectively. These findings help to establish baseline concentrations for EDCs in soil, sediment, and sludge in a chemical industrial park. LESS Full articleResearch Article|Published on: 24 Feb 2023 -
Dissolution and fate of silver nanoparticles in the presence of natural aquatic organic matter
J Environ Expo Assess 2023;2:6. DOI: 10.20517/jeea.2022.24AbstractDespite increasing interest in and use of nanoparticles (NP), the environmental consequences of using NP ... MOREDespite increasing interest in and use of nanoparticles (NP), the environmental consequences of using NP are poorly understood because most relevant studies have not taken the effects of natural coatings on NP into consideration. The aim of this study was to improve our understanding of the fates of NP in aquatic systems. The fates of silver NP (AgNP) capped with citrate and polyethylene glycol dispersed in ecotoxicological matrices in the presence of environmentally relevant components of natural water (humic substances and extracellular polymeric substances) were investigated. Interactions between AgNP and natural organic matter were evaluated by ultracentrifugation and electrophoretic mobility measurements to assess AgNP dissolution. Humic substances and extracellular polymeric substances both decreased the dissolution rate. The natural organic matter (humic substances and extracellular polymeric substances) provided conditions in which the medium stabilized the NP. The dissolution rate depended on the coating type (citrate or polyethylene glycol), dissolved organic carbon concentration, and particle concentration. The presence of algae and Daphnia affected AgNP conversion, demonstrating the value of research that takes environmentally relevant matrices into consideration. The results improve our understanding of the factors that affect the bioavailabilities of AgNP and therefore improve our ability to evaluate AgNP toxicity. Studies of other NP using the same strategy will improve our understanding of the fates of nanomaterials in the environment and biota.Highlights• Natural organic matter controls silver nanoparticle environmental dissolution/fate;• Exopolysaccharides and aquatic humic substances both promote AgNP stabilization;• Capping agents (citrate or polyethylene glycol) change the AgNP dissolution rate;• AgNP behave differently when considering media for algae and Daphnia bioassays. LESS Full articleResearch Article|Published on: 1 Feb 2023 -
Quantitative detection of organic mercury in whole blood using derivatization and gas chromatography-negative chemical ionization-mass spectrometry
J Environ Expo Assess 2023;2:5. DOI: 10.20517/jeea.2022.26AbstractThe Minamata disease, first identified in Japan in the 1950s, is caused by severe methylmercury ... MOREThe Minamata disease, first identified in Japan in the 1950s, is caused by severe methylmercury (MeHg) poisoning. To prevent the development of this disease, routine evaluation of MeHg levels in blood samples is crucial. The purpose of this research was to explore the use of derivatization and capillary gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI-MS) for the quantitative detection of both organic and inorganic mercury in blood samples. Alkyl mercury in standard solutions was extracted as halide salts in toluene with hydrohalic acid. Fat contents in whole blood samples were removed by methyl isobutyl ketone and hexane using a cysteine/alkaline solution and then organic mercury was extracted as a bromide complex using toluene and cupper chloride solution. The linearity of the response ratio vs. concentration curves (R2) was 0.987 for methylmercury bromide and 0.990 for ethylmercury (EtHg) bromide, over the calibration range of 0.02 ng/mL to 20 ng/mL. The recovery of MeHg and EtHg was 67.1% and 49.3%, respectively. The concentrations of MeHg in whole blood samples determined using GC with an electron capture detector agreed with those determined using GC-NCI-MS, with a correlation coefficient of 0.923. The mean concentration of MeHg in a certified reference material (NMIJ CRM 7402-a) determined using GC-NCI-MS was 0.64 μg/g, comparable with the certified value of0.58 μg/g. Our study demonstrates a simple and low-cost approach for analyzing mercury in biological samples, although further optimization is required given the relatively low recovery and the concern about the toxicity of methyl isobutyl ketone. LESS Full articleResearch Article|Published on: 16 Jan 2023
See more
Most Viewed Articles Published In 2022
-
Microplastics in the atmosphere: a review
J Environ Expo Assess 2022;1:6. DOI: 10.20517/jeea.2021.07AbstractMicroplastics (MPs) are ubiquitous environmental contaminants of considerable persistence and have been a global concern ... MOREMicroplastics (MPs) are ubiquitous environmental contaminants of considerable persistence and have been a global concern for the past decade. Recently, atmospheric MPs have gained attention. The presence of MPs in the air has been reported from different regions and in air masses over water bodies, demonstrating MPs’ capability of long-range transport and wide spatial distribution away from their source of origin. This review of atmospheric MPs raises questions about the validity and legitimacy of approaches adopted for assessing MP in indoor and outdoor aerosols. The review also provides insight into active and passive sampling techniques and draws attention to the use of the data produced. MP abundance in the atmosphere varies widely among studies due to the disparities in methods employed and the heterogeneity in reporting, making comparisons across spatio-temporal domains infructuous. This review also highlights the paucity of data on atmospheric MPs, and the eminent need to harmonize the methodology for generating a useful comparable dataset that can be used for human health risk assessments. LESS Full articleReview|Published on: 25 Jan 2022 -
Ambient air concentrations and risk assessment of selected organochlorine pesticides (OCPs) across five Middle Eastern countries
J Environ Expo Assess 2022;1:14. DOI: 10.20517/jeea.2022.05AbstractThis paper presents data obtained from concurrently deployed polyurethane foam disk passive samplers in Kuwait, ... MOREThis paper presents data obtained from concurrently deployed polyurethane foam disk passive samplers in Kuwait, Turkey, Lebanon, Saudi Arabia, and Oman between January and October 2018. The study’s main goal was to initiate a passive air sampling network across the Middle East to generate comparable data, which will help report obligations of the various countries and be used in protocol discussions. The ∑24OCP concentrations were highest in the samples collected from Kartaba in Lebanon (7780 pg·m-3), and the lowest concentration was recorded at the BUTAL site in the Bursa province of Turkey (7.27 pg·m-3). The mean ambient ∑24OCP concentrations on a country-specific basis over consecutive sampling campaigns were: Lebanon (1680 pg·m-3) > Bursa (Turkey) (78.7 pg·m-3) > Oman (55 pg·m-3) > Kuwait (42 pg·m-3) > Jeddah, Saudi Arabia (19.1 pg·m-3). The results show no cancer risk due to inhalation of organochlorine pesticides (OCPs) in ambient air. This study provides the first reliable measurements of the spatial variability in the atmospheric concentrations of OCPs across several Middle Eastern countries, providing a baseline for assessing time trends in air, one of the core matrices for the effectiveness evaluation of the Stockholm Convention on Persistent Organic Pollutants. LESS Full articleResearch Article|Published on: 13 May 2022 -
Questioning the appropriateness of sieving for processing indoor settled dust samples
J Environ Expo Assess 2022;1:15. DOI: 10.20517/jeea.2022.12AbstractDust is a widely-used matrix for estimating human exposure to chemicals or as a screening ... MOREDust is a widely-used matrix for estimating human exposure to chemicals or as a screening tool for the identification of indoor chemicals of concern. As dust sampling became more common in exposure assessment, techniques used in processing soil have been adapted to dust samples, and separation of dust particles by sieving is common practice. However, there are no defined pore sizes, which results in inconsistent or difficult data interpretation and exposure estimates. Moreover, dust consists of more particle types than soil, particularly fibers, which behave differently during the sieving process. In this study, composite samples from seven microenvironments (homes, apartments, kindergartens, schools, public spaces, offices, and cars) were used to investigate the impact of the separation of dust by sieving on the observed chemical distributions. Dust was sieved to four particle size fractions (1-2 mm, 0.5-1 mm, 0.25-0.5 mm, and < 0.25 mm) and each fraction was analyzed for organic carbon content and polycyclic aromatic hydrocarbons (PAHs), and images of dust samples were taken by optical microscope. We identified irregular distributions across size fractions for carbon and PAHs as well as for fibrous particles. Based on the combination of chemical analyses and microscopy, we recommend careful consideration of pre-processing of dust samples to limit bias in dust exposure assessments, and sieving should be used only when necessary. LESS Full articleResearch Article|Published on: 15 Jun 2022 -
Persistent organic pollutants on human and sheep hair and comparison with POPs in indoor and outdoor air
J Environ Expo Assess 2022;1:5. DOI: 10.20517/jeea.2021.06AbstractThis study compared the concentration of persistent organic pollutants (POPs) in air derived from polyurethane-based ... MOREThis study compared the concentration of persistent organic pollutants (POPs) in air derived from polyurethane-based passive samplers to those of hair samples collected from humans and sheep. Human scalp hair samples were obtained from 24 healthy individuals and ten sheep (Ovis aries) during indoor and outdoor polyurethane foam plug ambient sampling. The samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs). ∑PBDE concentrations ranged 0.6-50 ng·g-1 (mean, 18.6 ± 13 ng·g-1) for humans and 0.6-1.4 ng·g-1 (mean, 1.1 ± 0.25 ng·g-1) for sheep. The ∑PAH concentrations were log-normally distributed in human hair ranging 98-2529 ng·g-1 (mean, 460 ± 538 ng·g-1), whereas concentrations for sheep hair samples ranged 168-526 ng·g-1 (mean, 334 ± 117 ng·g-1). Strong correlations (P-values < 0.01) were found between concentrations of PAHs and PBDEs in human and sheep hair with concentrations measured in indoor and outdoor air, respectively. Evidence generated from this preliminary study suggests that hair might be used for the environmental monitoring of POPs in remote sites to provide a first-order estimate of ambient levels. Further studies are required to understand the uptake profiles and validate the use of hair as a sampling medium for POPs in ambient air. LESS Full articleResearch Article|Published on: 20 Jan 2022 -
Human exposure assessment of organophosphate esters (OPEs) through dust ingestion and dermal absorption in Colombian cities
J Environ Expo Assess 2022;1:8. DOI: 10.20517/jeea.2021.08AbstractConcentrations of 19 organophosphate esters (OPEs) were determined in dust samples collected from house and ... MOREConcentrations of 19 organophosphate esters (OPEs) were determined in dust samples collected from house and car indoor microenvironments in three Colombian cities. ∑OPE concentrations ranged from 1.31 to 599 μg/g. Mean concentrations of dust homes were 82.6, 48.3, and 46.7 μg/g for Cartagena, Bogotá, and Medellín, respectively. The pollution inside cars was somewhat higher than in houses, with a mean value of 231 μg/g. Sixteen compounds were detected, being TPHP, DCP, TEP, and TCEP the most frequently detected. As for OPEs with higher levels in houses, we found (mean ± SD) 35.2 ± 37.1 μg/g for TDCIPP in Cartagena, 35.6 ± 80.2 μg/g for TPHP in Cartagena, 15.9 ± 31.4 μg/g for DCP in Cartagena, 35.7 ± 19.1 μg/g for TBOEP in Bogotá, 15.7 ± 14.8 μg/g for 4IPPDPP in Medellín, and 17.5 ± 22.9 μg/g for TCEP in Cartagena, while the highest OPE value found in cars was 176 ±144 μg/g for TDCIPP. The estimated daily intake (EDI) of OPEs through dust ingestion ranged from0.001 ng/kg bw/day for adults to 110 ng/kg bw/day for toddlers, while dermal absorption ranged from0.02 ng/kg bw/day for adults to 42.7 ng/kg bw/day for infants. Overall, the EDIs of dust ingestion were three times greater than those of dust dermal absorption. The estimated EDIs were several orders of magnitude below the corresponding reference doses. However, the incremental lifetime cancer risk (ILCR) for TCEP ranged from 1.1 × 10-5 for infants in Bogotá to 4.3 × 10-4 for adults in Cartagena, while ILCR for TEHP ranged from 8.8 × 10-7 for infants in Bogotá to 1.1 × 10-5 for adults in Bogotá. These estimated ILCRs were higher than the safe limit value of 1 × 10-6 and showed that these populations are exposed to moderate cancer risk. LESS Full articleResearch Article|Published on: 5 Mar 2022
See more
About The Journal
-
ISSN
2771-5949 (Online)
Publisher
OAE Publishing Inc.
Article Processing Charges
$1200
-
Editor-in-Chief
Stuart Harrad
Publishing Model
Gold Open Access
Copyright
Copyright is retained by author(s)
-
Publication Frequency
Quarterly
Indexing
Journal Data Analysis
Total publications: 33
Total article views: 42,081
Total article downloads: 7,479
Open Archives
-
Portico
All published articles will be preserved here permanently:
https://www.portico.org/publishers/oae/