REFERENCES

1. Shneier, M. O.; Bostelman, R. V. Literature review of mobile robots for manufacturing. National Institute of Standards and Technology; 2015.

2. Siciliano, B.; Khatib, O. Springer handbook of robotics. 2nd edition. Berlin Heidelberg: Springer; 2016.

3. Rindfleisch, A.; Fukawa, N.; Onzo, N. Robots in retail: rolling out the Whiz. AMS. Rev. 2022, 12, 238-44.

4. Sparrow, R.; Howard, M. Robots in agriculture: prospects, impacts, ethics, and policy. Precision. Agric. 2021, 22, 818-33.

5. Kyrarini, M.; Lygerakis, F.; Rajavenkatanarayanan, A.; et al. A survey of robots in healthcare. Technologies 2021, 9, 8.

6. Decker, M.; Fischer, M.; Ott, I. Service robotics and human labor: a first technology assessment of substitution and cooperation. Robot. Auton. Syst. 2017, 87, 348-54.

7. Maurtua, I.; Susperregi, L.; Fernández, A.; et al. MAINBOT - mobile robots for inspection and maintenance in extensive industrial plants. Energy. Procedia. 2014, 49, 1810-9.

8. Rea, P.; Ottaviano, E. Design and development of an inspection robotic system for indoor applications. Robot. Comput. Integr. Manuf. 2018, 49, 143-51.

9. Mapara, S. S.; Patravale, V. B. Medical capsule robots: a renaissance for diagnostics, drug delivery and surgical treatment. J. Controlled. Release. 2017, 261, 337-51.

10. Omisore, O. M.; Han, S.; Xiong, J.; Li, H.; Li, Z.; Wang, L. A review on flexible robotic systems for minimally invasive surgery. IEEE. Trans. Syst. Man. Cybern. 2022, 52, 631-44.

11. Narayan, J.; Kalita, B.; Dwivedy, S. K. Development of robot-based upper limb devices for rehabilitation purposes: a systematic review. Augment. Hum. Res. 2021, 6, 4.

12. Laschi, C.; Mazzolai, B.; Cianchetti, M. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 2016, 1, eaah3690.

13. Bao, G.; Fang, H.; Chen, L.; et al. Soft robotics: academic insights and perspectives through bibliometric analysis. Soft. Robot. 2018, 5, 229-41.

14. De Volder M, Moers AJM, Reynaerts D. Fabrication and control of miniature McKibben actuators. Sens. Actuators. A. Phys. 2011, 166, 111-6.

15. Robertson, M. A.; Sadeghi, H.; Florez, J. M.; Paik, J. Soft pneumatic actuator fascicles for high force and reliability. Soft. Robot. 2017, 4, 23-32.

16. Whitesides, G. M. Soft robotics. Angew. Chem. Int. Ed. Engl. 2018, 57, 4258-73.

17. Pinskier, J.; Howard, D. From bioinspiration to computer generation: developments in autonomous soft robot design. Adv. Intell. Syst. 2022, 4, 2100086.

18. Wang, H.; Totaro, M.; Beccai, L. Toward perceptive soft robots: progress and challenges. Adv. Sci. 2018, 5, 1800541.

19. Harris, H.; Radecka, A.; Malik, R.; et al. Development and characterization of biostable hydrogel robotic actuators for implantable devices: tendon actuated gelatin. In: 2022 Design of Medical Devices Conference; Minneapolis, USA: American Society of Mechanical Engineers; 2022.

20. Kim, J.; Park, H.; Yoon, C. Advances in Biodegradable Soft Robots. Polymers 2022, 14, 4574.

21. Aracri, S.; Giorgio-Serchi, F.; Suaria, G.; et al. Soft robots for ocean exploration and offshore operations: a perspective. Soft. Robot. 2021, 8, 625-39.

22. Zhang, Y.; Li, P.; Quan, J.; Li, L.; Zhang, G.; Zhou, D. Progress, challenges, and prospects of soft robotics for space applications. Adv. Intell. Syst. 2023, 5, 2200071.

23. Li, P.; Zhang, Y.; Zhang, G.; Zhou, D.; Li, L. A bioinspired soft robot combining the growth adaptability of vine plants with a coordinated control system. Research 2021, 2021, 9843859.

24. Singh, B.; Sellappan, N.; Kumaradhas, P. Evolution of industrial robots and their applications. Int J Emerg Technol Adv Eng 2013;3:763-8. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a30d514efd157dba6f385135eda5d8dadc3988bf. [Last accessed on 13 Jan 2025].

25. Bilodeau, R. A.; Kramer, R. K. Self-healing and damage resilience for soft robotics: a review. Front. Robot. AI. 2017, 4, 48.

26. Schmitt, F.; Piccin, O.; Barbé, L.; Bayle, B. Soft robots manufacturing: a review. Front. Robot. AI. 2018, 5, 84.

27. Santina CD, Duriez C, Rus D. Model-based control of soft robots: a survey of the state of the art and open challenges. IEEE. Contr. Syst. Mag. 2023, 43, 30-65.

28. Rus, D.; Tolley, M. T. Design, fabrication and control of soft robots. Nature 2015, 521, 467-75.

29. Helmenstine, A. Ductility - ductile definition and examples. 2021. Available from: https://sciencenotes.org/ductility-ductile-definition-and-examples/. [Last accessed on 13 Jan 2025].

30. AZO Materials. Silicone rubber. Available from: https://www.azom.com/properties.aspx?ArticleID=920. [Last accessed on 13 Jan 2025].

31. Mansy, H. A.; Grahe, J. R.; Sandler, R. H. Elastic properties of synthetic materials for soft tissue modeling. Phys. Med. Biol. 2008, 53, 2115-30.

32. World Material. Density of metals, all common metal density chart & table PDF. Available from: https://www.theworldmaterial.com/density-of-metals/. [Last accessed on 13 Jan 2025].

33. MatWeb, Material Property Data. Overview of materials for silicon rubber. Available from: https://www.matweb.com/search/DataSheet.aspx?MatGUID=cbe7a469897a47eda563816c86a73520. [Last accessed on 13 Jan 2025].

34. MatWeb, Material Property Data. Aluminum, Al. Available from: https://www.matweb.com/search/DataSheet.aspx?MatGUID=0cd1edf33ac145ee93a0aa6fc666c0e0. [Last accessed on 13 Jan 2025].

35. MatWeb, Material Property Data. Iron, Fe. Available from: https://www.matweb.com/search/DataSheet.aspx?MatGUID=654ca9c358264b5392d43315d8535b7d&ckck=1. [Last accessed on 13 Jan 2025].

36. MatWeb, Material Property Data. Overview of materials for high carbon steel. Available from: https://www.matweb.com/search/DataSheet.aspx?MatGUID=ee25302df4b34404b21ad67f8a83e858&ckck=1. [Last accessed on 13 Jan 2025].

37. MatWeb, Material Property Data. Overview of materials for low carbon steel. Available from: https://www.matweb.com/search/DataSheet.aspx?MatGUID=034970339dd14349a8297d2c83134649&ckck=1. [Last accessed on 13 Jan 2025].

38. MatWeb, Material Property Data. Overview of materials for stainless steel. Available from: https://www.matweb.com/search/DataSheet.aspx?MatGUID=71396e57ff5940b791ece120e4d563e0&ckck=1. [Last accessed on 13 Jan 2025].

39. King, L. M.; Margherio, R. R.; Schepens, C. L. Gelatin implants in scleral buckling procedures. Arch. Ophthalmol. 1975, 93, 807-11.

40. Erturk, P. A.; Altuntas, S.; Irmak, G.; Buyukserin, F. Bioinspired collagen/gelatin nanopillared films as a potential implant coating material. ACS. Appl. Bio. Mater. 2022, 5, 4913-21.

41. Gunatillake, P. A.; Meijs, G. F. Polyurethanes in biomedical engineering. In: Encyclopedia of materials: science and technology. Elsevier; 2001. pp. 7746-52.

42. Přikrylová, J.; Procházková, J.; Podzimek, Š. Side effects of dental metal implants: impact on human health (metal as a risk factor of implantologic treatment). Biomed. Res. Int. 2019, 2019, 2519205.

43. Wang, Y.; Gregory, C.; Minor, M. A. Improving mechanical properties of molded silicone rubber for soft robotics through fabric compositing. Soft. Robot. 2018, 5, 272-90.

44. Zhang, Y.; Lu, M. A review of recent advancements in soft and flexible robots for medical applications. Int. J. Med. Robot. 2020, 16, e2096.

45. Terryn, S.; Langenbach, J.; Roels, E.; et al. A review on self-healing polymers for soft robotics. Mater. Today. 2021, 47, 187-205.

46. Cheng, Z.; Feng, W.; Zhang, Y.; et al. A highly robust amphibious soft robot with imperceptibility based on a water-stable and self-healing ionic conductor. Adv. Mater. 2023, 35, 2301005.

47. Kashef, T. S.; Terryn, S.; Cornellà, A. C.; et al. Assisted damage closure and healing in soft robots by shape memory alloy wires. Sci. Rep. 2023, 13, 8820.

48. Zhang, Z.; Ni, X.; Wu, H.; et al. Pneumatically actuated soft gripper with bistable structures. Soft. Robot. 2022, 9, 57-71.

49. Dey, K. K.; Bhandari, S.; Bandyopadhyay, D.; Basu, S.; Chattopadhyay, A. The pH taxis of an intelligent catalytic microbot. Small 2013, 9, 1916-20.

50. Miskin, M. Z.; Cortese, A. J.; Dorsey, K.; et al. Electronically integrated, mass-manufactured, microscopic robots. Nature 2020, 584, 557-61.

51. Li, J.; Li, X.; Luo, T.; et al. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 2018, 3, eaat8829.

52. Breger, J. C.; Yoon, C.; Xiao, R.; et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS. Appl. Mater. Interfaces. 2015, 7, 3398-405.

53. Del, C. F. A.; Glück, C.; Droux, J.; et al. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat. Commun. 2023, 14, 5889.

54. Power, M.; Thompson, A. J.; Anastasova, S.; Yang, G. Z. A monolithic force-sensitive 3D microgripper fabricated on the tip of an optical fiber using 2-photon polymerization. Small 2018, 14, e1703964.

55. Kim, Y.; Zhao, X. Magnetic soft materials and robots. Chem. Rev. 2022, 122, 5317-64.

56. Li, Y.; Huang, G.; Zhang, X.; et al. Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 2013, 23, 660-72.

57. Zhang, J.; Diller, E. Untethered miniature soft robots: modeling and design of a millimeter-scale swimming magnetic sheet. Soft. Robot. , 2018, 761-76.

58. Blumenschein, L. H.; Gan, L. T.; Fan, J. A.; Okamura, A. M.; Hawkes, E. W. A tip-extending soft robot enables reconfigurable and deployable antennas. IEEE. Robot. Autom. Lett. 2018, 3, 949-56.

59. Zhong, T.; Wei, F. A jumping soft robot driven by magnetic field. In: Liu X, Nie Z, Yu J, Xie F, Song R, editors. Intelligent Robotics and Applications. Cham: Springer International Publishing; 2021. pp. 267-74.

60. Apsite, I.; Salehi, S.; Ionov, L. Materials for smart soft actuator systems. Chem. Rev. 2022, 122, 1349-415.

61. Wang, C.; Wang, C.; Huang, Z.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, e1801368.

62. Brochu, P.; Pei, Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid. Commun. 2010, 31, 10-36.

63. Shintake, J.; Shea, H.; Floreano, D. Biomimetic underwater robots based on dielectric elastomer actuators. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Daejeon, South Korea. IEEE; 2016. pp. 4957-62.

64. Qiu, Y.; Zhang, E.; Plamthottam, R.; Pei, Q. Dielectric elastomer artificial muscle: materials innovations and device explorations. Acc. Chem. Res. 2019, 52, 316-25.

65. Park, S. W.; Kim, S. J.; Park, S. H.; Lee, J.; Kim, H.; Kim, M. K. Recent progress in development and applications of ionic polymer-metal composite. Micromachines 2022, 13, 1290.

66. Branz, F.; Francesconi, A. Experimental evaluation of a dielectric elastomer robotic arm for space applications. Acta. Astronaut. 2017, 133, 324-33.

67. Vahabi, M.; Mehdizadeh, E.; Kabganian, M.; Barazandeh, F. Design and modeling of a novel in-pipe microrobot using IPMC actuators. [Internet]. In: ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis; Istanbul, Turkey. ASMEDC; 2010. pp. 281-8.

68. Nocentini, S.; Parmeggiani, C.; Martella, D.; Wiersma, D. S. Optically driven soft micro robotics. Adv. Opt. Mater. 2018, 6, 1800207.

69. Jiang, W.; Niu, D.; Liu, H.; et al. Photoresponsive soft-robotic platform: biomimetic fabrication and remote actuation. Adv. Funct. Mater. 2014, 24, 7598-604.

70. Jiang, Z. C.; Xiao, Y. Y.; Tong, X.; Zhao, Y. Selective decrosslinking in liquid crystal polymer actuators for optical reconfiguration of origami and light-fueled locomotion. Angew. Chem. Int. Ed. 2019, 131, 5386-91.

71. Ahn, C.; Liang, X.; Cai, S. Bioinspired design of light-powered crawling, squeezing, and jumping untethered soft robot. Adv. Mater. Technol. 2019, 4, 1900185.

72. Wu, J.; Ai, W.; Hou, K.; Zhang, C.; Long, Y.; Song, K. Light-driven soft climbing robot based on negative pressure adsorption. Chem. Eng. J. 2023, 466, 143131.

73. De, S.; Aluru, N.; Johnson, B.; Crone, W.; Beebe, D.; Moore, J. Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J. Microelectromech. Syst. 2002, 11, 544-55.

74. Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem. 2017, 8, 144-76.

75. Xu, P.; Van, K. E. A.; Murdoch, W. J.; et al. Anticancer efficacies of cisplatin-releasing pH-responsive nanoparticles. Biomacromolecules 2006, 7, 829-35.

76. Loepfe, M. Combustion-driven soft machines: design, manufacturing and application. 2016. Available from: https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/117172/eth-49181-01.pdf. [Last accessed on 13 Jan 2025].

77. Gupta, P.; Vermani, K.; Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug. Discov. Today. 2002, 7, 569-79.

78. He, Z.; Yang, Y.; Jiao, P.; Wang, H.; Lin, G.; Pähtz, T. Copebot: underwater soft robot with copepod-like locomotion. Soft. Robot. 2023, 10, 314-25.

79. Tolley, M. T.; Shepherd, R. F.; Karpelson, M.; et al. An untethered jumping soft robot. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems; Chicago, USA. IEEE; 2014. pp. 561-6.

80. Xian, S.; Webber, M. J. Temperature-responsive supramolecular hydrogels. J. Mater. Chem. B. 2020, 8, 9197-211.

81. Jochum, F. D.; Theato, P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468-83.

82. Dai, H.; Chen, Q.; Qin, H.; et al. A temperature-responsive copolymer hydrogel in controlled drug delivery. Macromolecules 2006, 39, 6584-9.

83. Yang, H.; Xu, M.; Li, W.; Zhang, S. Design and Implementation of a soft robotic arm driven by SMA coils. IEEE. Trans. Ind. Electron. 2019, 66, 6108-16.

84. Feng, R.; Zhang, Y.; Liu, J.; Zhang, Y.; Li, J.; Baoyin, H. Soft robotic perspective and concept for planetary small body exploration. Soft. Robot. 2022, 9, 889-99.

85. Wu, S.; Hong, Y.; Zhao, Y.; Yin, J.; Zhu, Y. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. Sci. Adv. 2023, 9, eadf8014.

86. Katzschmann, R. K.; DelPreto, J.; MacCurdy, R.; Rus, D. Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Robot. 2018, 3, eaar3449.

87. Lindenroth, L.; Housden, R. J.; Wang, S.; Back, J.; Rhode, K.; Liu, H. Design and integration of a parallel, soft robotic end-effector for extracorporeal ultrasound. IEEE. Trans. Biomed. Eng. 2020, 67, 2215-29.

88. Walker, J.; Zidek, T.; Harbel, C.; et al. Soft robotics: a review of recent developments of pneumatic soft actuators. Actuators 2020, 9, 3.

89. Roche, E. T.; Horvath, M. A.; Wamala, I.; et al. Soft robotic sleeve supports heart function. Sci. Transl. Med. 2017, 9, eaaf3925.

90. Liu, J.; Yin, L.; Chandler, J. H.; Chen, X.; Valdastri, P.; Zuo, S. A dual-bending endoscope with shape-lockable hydraulic actuation and water-jet propulsion for gastrointestinal tract screening. Int. J. Med. Robot. 2021, 17, 1-13.

91. Galloway, K. C.; Becker, K. P.; Phillips, B.; et al. Soft robotic grippers for biological sampling on deep reefs. Soft. Robot. 2016, 3, 23-33.

92. Palmieri, P.; Melchiorre, M.; Mauro, S. Design of a lightweight and deployable soft robotic arm. Robotics 2022, 11, 88.

93. Der, M. P. A.; Djambazi, B.; Haberthur, Y.; et al. RoBoa: construction and evaluation of a steerable vine robot for search and rescue applications. In: 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft); New Haven, USA. IEEE; 2021. pp. 15-20.

94. Talas, S. K.; Baydere, B. A.; Altinsoy, T.; Tutcu, C.; Samur, E. Design and development of a growing pneumatic soft robot. Soft. Robot. 2020, 7, 521-33.

95. Stella, F.; Hughes, J. The science of soft robot design: a review of motivations, methods and enabling technologies. Front. Robot. AI. 2022, 9, 1059026.

96. Hartmann, F.; Baumgartner, M.; Kaltenbrunner, M. Becoming sustainable, the new frontier in soft robotics. Adv. Mater. 2021, 33, e2004413.

97. Wang, D.; Wang, J.; Shen, Z.; et al. Soft actuators and robots enabled by additive manufacturing. Annu. Rev. Control. Robot. Auton. Syst. 2023, 6, 31-63.

98. Hegde, C.; Su, J.; Tan, J. M. R.; He, K.; Chen, X.; Magdassi, S. Sensing in soft robotics. ACS. Nano. 2023, 17, 15277-307.

99. Hajra, S.; Panda, S.; Khanberh, H.; et al. Revolutionizing self-powered robotic systems with triboelectric nanogenerators. Nano. Energy. 2023, 115, 108729.

100. Armanini, C.; Boyer, F.; Mathew, A. T.; Duriez, C.; Renda, F. Soft robots modeling: a structured overview. IEEE. Trans. Robot. 2023, 39, 1728-48.

101. Patel, D. K.; Huang, X.; Luo, Y.; et al. Highly dynamic bistable soft actuator for reconfigurable multimodal soft robots. Adv. Mater. Technol. 2023, 8, 2201259.

102. Pal, S. Mechanical properties of biological materials. In: Design of artificial human joints & organs. Boston: Springer; 2014. pp. 23-40.

103. Li-Baboud, Y. S.; Virts, A.; Bostelman, R.; et al. Evaluation methods and measurement challenges for industrial exoskeletons. Sensors 2023, 23, 5604.

104. Paternò, L.; Lorenzon, L. Soft robotics in wearable and implantable medical applications: translational challenges and future outlooks. Front. Robot. AI. 2023, 10, 1075634.

105. Yin, S.; Jia, Z.; Li, X.; Zhu, J.; Xu, Y.; Li, T. Machine-learning-accelerated design of functional structural components in deep-sea soft robots. Extreme. Mech. Lett. 2022, 52, 101635.

106. Katzschmann, R. K.; Marchese, A. D.; Rus, D. Hydraulic autonomous soft robotic fish for 3D swimming. In: Hsieh MA, Khatib O, Kumar V, editors. Experimental Robotics. Cham: Springer International Publishing; 2016. pp. 405-20.

107. Wen, T.; Hu, J.; Zhang, J.; Li, X.; Kang, S.; Zhang, N. Design, performance analysis, and experiments of a soft robot for rescue. J. Mech. Robot. 2024, 16, 071011.

108. Milana, E. Soft robotics for infrastructure protection. Front. Robot. AI. 2022, 9, 1026891.

109. Lukaski, H. C.; Bolonchuk, W. W. Estimation of body fluid volumes using tetrapolar bioelectrical impedance measurements. Aviat. Space. Environ. Med. 1988, 59, 1163-9.

111. Gaohua, L.; Miao, X.; Dou, L. Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. Expert. Opin. Drug. Metab. Toxicol. 2021, 17, 1103-24.

112. Baldwin, D. R.; Marshall, W. J. Heavy metal poisoning and its laboratory investigation. Ann. Clin. Biochem. 1999, 36, 267-300.

113. Su, Y.; Ma, C.; Chen, J.; et al. Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review. Nanoscale. Res. Lett. 2020, 15, 200.

114. Ogunrinola, G. A.; Oyewale, J. O.; Oshamika, O. O.; Olasehinde, G. I. The human microbiome and its impacts on health. Int. J. Microbiol. 2020, 2020, 8045646.

115. Zhang, Y. J.; Li, S.; Gan, R. Y.; Zhou, T.; Xu, D. P.; Li, H. B. Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci. 2015, 16, 7493-519.

116. Zrinscak, D.; Lorenzon, L.; Maselli, M.; Cianchetti, M. Soft robotics for physical simulators, artificial organs and implantable assistive devices. Prog. Biomed. Eng. 2023, 5, 012002.

117. Runciman, M.; Darzi, A.; Mylonas, G. P. Soft robotics in minimally invasive surgery. Soft. Robot. 2019, 6, 423-43.

118. Banerjee, S.; Saharan, V. A. Soft robots for the delivery of drugs. In: Saharan VA, editor. Computer aided pharmaceutics and drug delivery. Singapore: Springer Nature; 2022. pp. 415-38.

119. Marchese, A. D.; Katzschmann, R. K.; Rus, D. A recipe for soft fluidic elastomer robots. Soft. Robot. 2015, 2, 7-25.

120. Andriot, M.; DeGroot, J. V.; Meeks, R.; et al. Silicones in industrial applications. 2009. Available from: https://www.researchgate.net/publication/251935579_Silicones_in_Industrial_Applications. [Last accessed on 13 Jan 2025].

121. Elango, N.; Faudzi, A. A. M. A review article: investigations on soft materials for soft robot manipulations. Int. J. Adv. Manuf. Technol. 2015, 80, 1027-37.

122. Krpovic, S.; Dam-Johansen, K.; Skov, A. L. Importance of Mullins effect in commercial silicone elastomer formulations for soft robotics. J. Appl. Polym. Sci. 2021, 138, 50380.

123. Garcia, L.; Kerns, G.; O’Reilley, K.; et al. The role of soft robotic micromachines in the future of medical devices and personalized medicine. Micromachines 2021, 13, 28.

124. Banerjee, H.; Suhail, M.; Ren, H. Hydrogel actuators and sensors for biomedical soft robots: brief overview with impending challenges. Biomimetics 2018, 3, 15.

125. Ionov, L. Hydrogel-based actuators: possibilities and limitations. Mater. Today. 2014, 17, 494-503.

126. Shi, Q.; Liu, H.; Tang, D.; Li, Y.; Li, X.; Xu, F. Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG. Asia. Mater. 2019, 11, 165.

127. Mishra, A. K.; Wallin, T. J.; Pan, W.; et al. Autonomic perspiration in 3D-printed hydrogel actuators. Sci. Robot. 2020, 5, eaaz3918.

128. Tang, N.; Peng, Z.; Guo, R.; et al. Thermal transport in soft PAAm hydrogels. Polymers 2017, 9, 688.

129. Edward, S.; Golecki, H. M. Gelatin soft actuators: benefits and opportunities. Actuators 2023, 12, 63.

130. Azevedo, H. S.; Santos, T. C.; Reis, R. L. 4 - Controlling the degradation of natural polymers for biomedical applications. In: Natural-based polymers for biomedical applications. Elsevier; 2008. pp. 106-28.

131. El-atab, N.; Mishra, R. B.; Al-modaf, F.; et al. Soft actuators for soft robotic applications: a review. Adv. Intell. Syst. 2020, 2, 2000128.

132. Byrne, O.; Coulter, F.; Glynn, M.; et al. Additive manufacture of composite soft pneumatic actuators. Soft. Robot. 2018, 5, 726-36.

133. Liang, W.; Liu, H.; Wang, K.; Qian, Z.; Ren, L.; Ren, L. Comparative study of robotic artificial actuators and biological muscle. Adv. Mech. Eng. 2020, 12, 1687814020933409.

134. Yan, B. Actuators for implantable devices: a broad view. Micromachines 2022, 13, 1756.

135. Rusu, D. M.; Mândru, S. D.; Biriș, C. M.; Petrașcu, O. L.; Morariu, F.; Ianosi-Andreeva-Dimitrova, A. Soft robotics: a systematic review and bibliometric analysis. Micromachines 2023, 14, 359.

136. Hu, L.; Bonnemain, J.; Saeed, M. Y.; et al. An implantable soft robotic ventilator augments inspiration in a pig model of respiratory insufficiency. Nat. Biomed. Eng. 2023, 7, 110-23.

137. Zaidi, S.; Maselli, M.; Laschi, C.; Cianchetti, M. Actuation technologies for soft robot grippers and manipulators: a review. Curr. Robot. Rep. 2021, 2, 355-69.

138. Shi, H.; Tan, K.; Zhang, B.; Liu, W. Review on research progress of hydraulic powered soft actuators. Energies 2022, 15, 9048.

139. Runciman, M.; Franco, E.; Avery, J.; Rodriguez, B. F.; Mylonas, G. Model based position control of soft hydraulic actuators. In: 2023 IEEE International Conference on Robotics and Automation (ICRA); London, United Kingdom. IEEE; 2023. pp. 2676-82.

140. Thai, M. T.; Phan, P. T.; Hoang, T. T.; Low, H.; Lovell, N. H.; Do, T. N. Design, fabrication, and hysteresis modeling of soft microtubule artificial muscle (SMAM) for medical applications. IEEE. Robot. Autom. Lett. 2021, 6, 5089-96.

141. Lee, J. G.; Raj, R. R.; Thome, C. P.; et al. Bubble-based microrobots with rapid circular motions for epithelial pinning and drug delivery. Small 2023, 19, e2300409.

142. Deng, N.; Li, J.; Lyu, H.; Huang, R.; Liu, H.; Guo, C. Degradable silk-based soft actuators with magnetic responsiveness. J. Mater. Chem. B. 2022, 10, 7650-60.

143. Yang, Z.; Zhang, L. Magnetic actuation systems for miniature robots: a review. Adv. Intell. Syst. 2020, 2, 2000082.

144. Hu, X.; Zhou, Y.; Li, M.; Wu, J.; He, G.; Jiao, N. Catheter-assisted bioinspired adhesive magnetic soft millirobot for drug delivery. Small 2024, 20, e2306510.

145. Yang, W.; Wang, X.; Ge, Z.; Yu, H. Magnetically controlled millipede inspired soft robot for releasing drugs on target area in stomach. IEEE. Robot. Autom. Lett. 2024, 9, 3846-53.

146. Kaufman, G.; Jimenez, J.; Bradshaw, A.; et al. A stiff-soft composite fabrication strategy for fiber optic tethered microtools. Adv. Mater. Technol. 2023, 8, 2202034.

147. Zmyślony, M.; Dradrach, K.; Haberko, J.; Nałęcz-Jawecki, P.; Rogóż, M.; Wasylczyk, P. Optical pliers: micrometer-scale, light-driven tools grown on optical fibers. Adv. Mater. 2020, 32, e2002779.

148. Leber, A.; Dong, C.; Laperrousaz, S.; et al. Highly integrated multi-material fibers for soft robotics. Adv. Sci. 2023, 10, e2204016.

149. Song, S.; Fallegger, F.; Trouillet, A.; Kim, K.; Lacour, S. P. Deployment of an electrocorticography system with a soft robotic actuator. Sci. Robot. 2023, 8, eadd1002.

150. Wei, L.; Huang, J.; Yan, Y.; et al. Substrate-independent, mechanically tunable, and scalable gelatin methacryloyl hydrogel coating with drag-reducing and anti-freezing properties. ACS. Appl. Polym. Mater. 2022, 4, 4876-85.

151. Xu, Y.; Hu, X.; Kundu, S.; et al. Silicon-based sensors for biomedical applications: a review. Sensors 2019, 19, 2908.

152. Engin, M.; Demirel, A.; Engin, E. Z.; Fedakar, M. Recent developments and trends in biomedical sensors. Measurement 2005, 37, 173-88.

153. Pang, Q.; Hu, H.; Zhang, H.; Qiao, B.; Ma, L. Temperature-responsive ionic conductive hydrogel for strain and temperature sensors. ACS. Appl. Mater. Interfaces. , 2022, 26536-47.

154. Zhai, D.; Liu, B.; Shi, Y.; et al. Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. ACS. Nano. 2013, 7, 3540-6.

155. Lin, P. H.; Sheu, S. C.; Chen, C. W.; Huang, S. C.; Li, B. R. Wearable hydrogel patch with noninvasive, electrochemical glucose sensor for natural sweat detection. Talanta 2022, 241, 123187.

156. Qiu, Y.; Ashok, A.; Nguyen, C. C.; Yamauchi, Y.; Do, T. N.; Phan, H. P. Integrated sensors for soft medical robotics. Small 2024, 20, e2308805.

157. Qasaimeh, M. A.; Sokhanvar, S.; Dargahi, J.; Kahrizi, M. PVDF-based microfabricated tactile sensor for minimally invasive surgery. J. Microelectromech. Syst. 2009, 18, 195-207.

158. Li, W.; Liu, A.; Wang, Y.; et al. Implantable and degradable wireless passive protein-based tactile sensor for intracranial dynamic pressure detection. Electronics 2023, 12, 2466.

159. Chen, J.; Zhu, Y.; Chang, X.; et al. Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 2021, 31, 2104686.

160. Lyu, Q.; Gong, S.; Lees, J. G.; et al. A soft and ultrasensitive force sensing diaphragm for probing cardiac organoids instantaneously and wirelessly. Nat. Commun. 2022, 13, 7259.

161. Kim, D. S.; Choi, Y. W.; Shanmugasundaram, A.; et al. Highly durable crack sensor integrated with silicone rubber cantilever for measuring cardiac contractility. Nat. Commun. 2020, 11, 535.

162. Pignanelli, J.; Schlingman, K.; Carmichael, T. B.; Rondeau-Gagné, S.; Ahamed, M. J. A comparative analysis of capacitive-based flexible PDMS pressure sensors. Sens. Actuators. A. Phys. 2019, 285, 427-36.

163. Wang, C.; Hu, Y.; Liu, Y.; et al. Tissue-adhesive piezoelectric soft sensor for in vivo blood pressure monitoring during surgical operation. Adv. Funct. Mater. 2023, 33, 2303696.

164. Laschi, C.; Calisti, M. Soft robot reaches the deepest part of the ocean. Nature 2021, 591, 35-6.

165. Calisti, M. Soft robotics in underwater legged locomotion: from octopus–inspired solutions to running robots. In: Laschi C, Rossiter J, Iida F, Cianchetti M, Margheri L, editors. Soft robotics: trends, applications and challenges. Cham: Springer International Publishing; 2017. pp. 31-6.

166. García-Valdovinos, L. G.; Salgado-Jiménez, T.; Bandala-Sánchez, M.; Nava-Balanzar, L.; Hernández-Alvarado, R.; Cruz-Ledesma, J. A. Modelling, design and robust control of a remotely operated underwater vehicle. Int. J. Adv. Robot. Syst. 2014, 11, 1.

167. Wang, R.; Zhang, C.; Zhang, Y.; Tan, W.; Chen, W.; Liu, L. Soft underwater swimming robots based on artificial muscle. Adv. Mater. Technol. 2023, 8, 2200962.

168. Gomis-Bellmunt, O.; Campanile, F.; Galceran-Arellano, S.; Montesinos-Miracle, D.; Rull-Duran, J. Hydraulic actuator modeling for optimization of mechatronic and adaptronic systems. Mechatronics 2008, 18, 634-40.

169. Wang, R.; Zhang, C.; Zhang, Y.; et al. Fast-swimming soft robotic fish actuated by bionic muscle. Soft. Robot. 2024, 11, 845-56.

170. Zou, T.; Jian, X.; Al-tamimi, M.; Wu, X.; Wu, J. Development of a low-cost soft robot fish with biomimetic swimming performance. J. Mech. Robot. 2024, 16, 061004.

171. Luo, R.; Li, S.; Wang, F. Design and motion characteristics analysis of underwater biomimetic jellyfish based on shape memory alloy springs. Ocean. Eng. 2024, 297, 117069.

172. Gong, H.; Li, Z.; Meng, F.; Tan, B.; Hou, S. Octopus predation-inspired underwater robot capable of adsorption through opening and closing claws. Appl. Sci. 2024, 14, 2250.

173. Hu, F.; Kou, Z.; Sefene, E. M.; Mikolajczyk, T. An origami flexiball-inspired soft robotic jellyfish. JMSE. 2023, 11, 714.

174. Ma, H.; Zhou, J. Modeling, characterization, and application of soft bellows-type pneumatic actuators for bionic locomotion. Acta. Mech. Solida. Sin. 2023, 36, 1-12.

175. Chen, S.; Xu, H.; Xiong, X.; Lu, B. An underwater jet-propulsion soft robot with high flexibility driven by water hydraulics. In: 2023 IEEE International Conference on Robotics and Automation (ICRA); London, United Kingdom. IEEE; 2023. pp. 2613-9.

176. Rajput G, Vora J, Prajapati P, Chaudhari R. Areas of recent developments for shape memory alloy: a review. Mater. Today. Proc. 2022, 62, 7194-8.

177. Ulloa C, Terrile S, Barrientos A. Soft underwater robot actuated by shape-memory alloys “JellyRobcib” for path tracking through fuzzy visual control. Appl. Sci. 2020, 10, 7160.

178. Gu, G. Y.; Zhu, J.; Zhu, L. M.; Zhu, X. A survey on dielectric elastomer actuators for soft robots. Bioinspir. Biomim. 2017, 12, 011003.

179. Wang, Y.; Ma, X.; Jiang, Y.; et al. Dielectric elastomer actuators for artificial muscles: a comprehensive review of soft robot explorations. Res. Chem. Mater. 2022, 1, 308-24.

180. Shintake, J.; Cacucciolo, V.; Shea, H.; Floreano, D. Soft biomimetic fish robot made of dielectric elastomer actuators. Soft. Robot. 2018, 5, 466-74.

181. Christianson, C.; Goldberg, N. N.; Deheyn, D. D.; Cai, S.; Tolley, M. T. Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot. 2018, 3, eaat1893.

182. Fu, R.; Guan, Y.; Xiao, C.; et al. Tough and highly efficient underwater self-repairing hydrogels for soft electronics. Small. Methods. 2022, 6, e2101513.

183. Qi, X.; Zhao, H.; Wang, L.; et al. Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem. Eng. J. 2022, 437, 135382.

184. Lin, Y.; Siddall, R.; Schwab, F.; et al. Modeling and control of a soft robotic fish with integrated soft sensing. Adv. Intell. Syst. 2023, 5, 2000244.

185. Hao, M.; Wang, Y.; Zhu, Z.; He, Q.; Zhu, D.; Luo, M. A compact review of IPMC as soft actuator and sensor: current trends, challenges, and potential solutions from our recent work. Front. Robot. AI. 2019, 6, 129.

186. Shen, Q.; Wang, T.; Kim, K. J. A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors. Bioinspir. Biomim. 2015, 10, 055007.

187. Minaian, N.; Olsen, Z. J.; Kim, K. J. Ionic polymer-metal composite (IPMC) artificial muscles in underwater environments: review of actuation, sensing, controls, and applications to soft robotics. In: Paley DA, Wereley NM, editors. Bioinspired sensing, actuation, and control in underwater soft robotic systems. Cham: Springer International Publishing; 2021. pp. 117-39.

188. Abdulsadda, A. T.; Tan, X. Underwater source localization using an IPMC-based artificial lateral line. In: 2011 IEEE International Conference on Robotics and Automation; Shanghai, China. IEEE; 2011. pp. 2719-24.

189. Levchenko, I.; Bazaka, K.; Belmonte, T.; Keidar, M.; Xu, S. Advanced materials for next-generation spacecraft. Adv. Mater. 2018, 30, e1802201.

190. Araromi, O. A.; Gavrilovich, I.; Shintake, J.; et al. Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper. IEEE/ASME. Trans. Mechatron. 2015, 20, 438-46.

191. Ogliani, E.; Yu, L.; Mazurek, P.; Skov, A. L. Designing reliable silicone elastomers for high-temperature applications. Polym. Degrad. Stab. 2018, 157, 175-80.

192. Porte, E.; Eristoff, S.; Agrawala, A.; Kramer-Bottiglio, R. Characterization of temperature and humidity dependence in soft elastomer behavior. Soft. Robot. 2024, 11, 118-30.

193. Mirvakili, S. M.; Leroy, A.; Sim, D.; Wang, E. N. Solar-driven soft robots. Adv. Sci. 2021, 8, 2004235.

194. Menon, C.; Carpi, F.; De, R. D. Concept design of novel bio-inspired distributed actuators for space applications. Acta. Astronautica. 2009, 65, 825-33.

195. Jing, Z.; Li, Q.; Su, W.; Chen, Y. Dielectric elastomer-driven bionic inchworm soft robot realizes forward and backward movement and jump. Actuators 2022, 11, 227.

196. Romano, D.; Di, G. A.; Pucciariello, C.; Stefanini, C. Turning earthworms into moonworms: earthworms colonization of lunar regolith as a bioengineering approach supporting future crop growth in space. Heliyon 2023, 9, e14683.

197. Giordano, M.; Ciriello, M.; Formisano, L.; et al. Iodine-biofortified microgreens as high nutraceutical value component of space mission crew diets and candidate for extraterrestrial cultivation. Plants 2023, 12, 2628.

198. Caporale, A. G.; Paradiso, R.; Liuzzi, G.; Arouna, N.; De, P. S.; Adamo, P. Can peat amendment of mars regolith simulant allow soybean cultivation in mars bioregenerative life support systems? Plants 2022, 12, 64.

199. Hammond, M.; Dempsey, A.; Ward, W.; et al. A hybrid soft material robotic end-effector for reversible in-space assembly of strut components. Front. Robot. AI. 2023, 10, 1099297.

200. Molaei, P.; Pitts, N. A.; Palardy, G.; et al. Cable decoupling and cable-based stiffening of continuum robots. IEEE. Access. 2022, 10, 104852-62.

201. Krishen, K. Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles. Acta. Astronautica. 2009, 64, 1160-6.

202. Fu, M.; Zhang, J.; Jin, Y.; Zhao, Y.; Huang, S.; Guo, C. F. A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers. Adv. Sci. 2020, 7, 2000258.

203. Fan, W.; He, Q.; Meng, K.; et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 2020, 6, eaay2840.

204. Akbari, A.; Chhabra, P. S.; Bhandari, U.; Bernardini, S. Intelligent exploration and autonomous navigation in confined spaces. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Las Vegas, USA. IEEE; 2020. pp. 2157-64.

205. Greer, D.; McKerrow, P.; Abrantes, J. Robots in urban search and rescue operations. In: Australasian Conference on Robotics and Automation. Auckland. 2002. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f89059556985a4456bd84591aeca6879ba549c97. [Last accessed on 13 Jan 2025]

206. Blumenschein, L. H.; Koehler, M.; Usevitch, N. S.; Hawkes, E. W.; Rucker, D. C.; Okamura, A. M. Geometric solutions for general actuator routing on inflated-beam soft growing robots. IEEE. Trans. Robot. 2022, 38, 1820-40.

207. El-Hussieny, H.; Hameed, I. A.; Zaky, A. B. Plant-inspired soft growing robots: a control approach using nonlinear model predictive techniques. Appl. Sci. 2023, 13, 2601.

208. Liu, X.; Song, M.; Fang, Y.; Zhao, Y.; Cao, C. Worm-inspired soft robots enable adaptable pipeline and tunnel inspection. Adv. Intell. Syst. 2022, 4, 2100128.

209. Wang, N.; Zhang, Y.; Zhang, G.; Zhao, W.; Peng, L. Development and analysis of key components of a multi motion mode soft-bodied pipe robot. Actuators 2022, 11, 125.

210. Yeh, C.; Chen, C.; Juang, J. Soft hopping and crawling robot for in-pipe traveling. Extreme. Mech. Lett. 2020, 39, 100854.

211. Singh, G.; Patiballa, S.; Zhang, X.; Krishnan, G. A pipe-climbing soft robot. In: 2019 International Conference on Robotics and Automation (ICRA); Montreal, Canada. IEEE; 2019. pp. 8450-6.

212. Saleeby, K. S. Design of soft-body robot with wireless communication for leak detection in large diameter pipe systems. 2017. Available from: https://dspace.mit.edu/handle/1721.1/112547. [Last accessed on 13 Jan 2025].

213. Wang, J.; Song, Y.; Zadan, M.; et al. Wireless actuation for soft electronics-free robots. In: Proceedings of the 29th Annual International Conference on Mobile Computing and Networking. Madrid; Spain. ACM; 2023. pp. 1-16.

214. Usevitch, N. S.; Hammond, Z. M.; Schwager, M.; Okamura, A. M.; Hawkes, E. W.; Follmer, S. An untethered isoperimetric soft robot. Sci. Robot. 2020, 5, eaaz0492.

215. Shepherd, R. F.; Stokes, A. A.; Freake, J.; et al. Using explosions to power a soft robot. Angew. Chem. Int. Ed. Engl. 2013, 52, 2892-6.

216. Mazzolai, B.; Mondini, A.; Tramacere, F.; et al. Octopus-inspired soft arm with suction cups for enhanced grasping tasks in confined environments. Adv. Intell. Syst. 2019, 1, 1900041.

217. Khatib, M.; Zohar, O.; Haick, H. Self-healing soft sensors: from material design to implementation. Adv. Mater. 2021, 33, e2004190.

218. Zhang, W.; Wu, B.; Sun, S.; Wu, P. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 2021, 12, 4082.

219. Georgopoulou, A.; Bosman, A. W.; Brancart, J.; Vanderborght, B.; Clemens, F. Supramolecular self-healing sensor fiber composites for damage detection in piezoresistive electronic skin for soft robots. Polymers 2021, 13, 2983.

220. Laschi, C.; Thuruthel, T. G.; Lida, F.; Merzouki, R.; Falotico, E. Learning-based control strategies for soft robots: theory, achievements, and future challenges. IEEE. Control. Syst. 2023, 43, 100-13.

221. Kim, S.; Laschi, C.; Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends. Biotechnol. 2013, 31, 287-94.

222. Villanueva, A.; Smith, C.; Priya, S. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir. Biomim. 2011, 6, 036004.

223. Zhang, H.; Kumar, A. S.; Fuh, J. Y. H.; Wang, M. Y. Design and development of a topology-optimized three-dimensional printed soft gripper. Soft. Robot. 2018, 5, 650-61.

224. Chen, F.; Wang, M. Y. Design optimization of soft robots: a review of the state of the art. IEEE. Robot. Automat. Mag. 2020, 27, 27-43.

225. Zhu, J.; Zhang, W.; Xia, L. Topology optimization in aircraft and aerospace structures design. Arch. Computat. Methods. Eng. 2016, 23, 595-622.

226. Yang, R. J.; Chahande, A. I. Automotive applications of topology optimization. Struct. Optim. 1995, 9, 245-9.

227. Golecki, T.; Gomez, F.; Carrion, J.; Spencer, B. F. Bridge topology optimization considering stochastic moving traffic. Eng. Struct. 2023, 292, 116498.

228. Liu, C. H.; Chen, T. L.; Chiu, C. H.; et al. Optimal design of a soft robotic gripper for grasping unknown objects. Soft. Robot. 2018, 5, 452-65.

229. Chen, F.; Xu, W.; Zhang, H.; et al. Topology optimized design, fabrication, and characterization of a soft cable-driven gripper. IEEE. Robot. Autom. Lett. 2018, 3, 2463-70.

230. Xing, J.; Luo, Y.; Deng, Y.; Wu, S.; Gai, Y. Topology optimization design of deformable flexible thermoelectric devices for voltage enhancement. Eng. Optim. 2023, 55, 1686-703.

231. Sanders, E. D.; Pereira, A.; Paulino, G. H. Optimal and continuous multilattice embedding. Sci. Adv. 2021, 7, eabf4838.

232. Wallin, M.; Tortorelli, D. A. Nonlinear homogenization for topology optimization. Mech. Mater. 2020, 145, 103324.

233. Jumet, B.; Bell, M. D.; Sanchez, V.; Preston, D. J. A data-driven review of soft robotics. Adv. Intell. Syst. 2022, 4, 2100163.

234. Liu, B.; Sha, L.; Huang, K.; Zhang, W.; Yang, H. A topology optimization method for collaborative robot lightweight design based on orthogonal experiment and its applications. Int. J. Adv. Robot. Syst. 2022, 19, 17298814211056143.

235. Zheng, Y.; Cao, L.; Qian, Z.; Chen, A.; Zhang, W. Topology optimization of a fully compliant prosthetic finger: design and testing. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob); Singapore, Singapore. IEEE; 2016. pp. 1029-34.

236. Li, D.; Chen, S.; Song, Z.; Liang, J.; Zhu, X.; Chen, F. Tailoring the in-plane and out-of-plane stiffness of soft fingers by endoskeleton topology optimization for stable grasping. Sci. China. Technol. Sci. 2023, 66, 3080-9.

237. Sun, Y.; Zong, C.; Pancheri, F.; Chen, T.; Lueth, T. C. Design of topology optimized compliant legs for bio-inspired quadruped robots. Sci. Rep. 2023, 13, 4875.

238. Al-Tamimi, A. A.; Peach, C.; Fernandes, P. R.; Cseke, A.; Bartolo, P. J. Topology optimization to reduce the stress shielding effect for orthopedic applications. Procedia. CIRP. 2017, 65, 202-6.

239. Sato, Y.; Kobayashi, H.; Yuhn, C.; Kawamoto, A.; Nomura, T.; Kikuchi, N. Topology optimization of locomoting soft bodies using material point method. Struct. Multidisc. Optim. 2023, 66, 3502.

240. Gillespie, M. T.; Best, C. M.; Townsend, E. C.; Wingate, D.; Killpack, M. D. Learning nonlinear dynamic models of soft robots for model predictive control with neural networks. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft); Livorno, Italy. IEEE; 2018. pp. 39-45.

241. Goodwin, G. C.; Graebe, S. F.; Salgado, M. E. Control system design. Available from: https://www.academia.edu/23184065/CONTROL_SYSTEM_DESIGN. [Last accessed on 13 Jan 2025].

242. Runciman, M.; Avery, J.; Darzi, A.; Mylonas, G. Open loop position control of soft hydraulic actuators for minimally invasive surgery. Appl. Sci. 2021, 11, 7391.

243. Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143-53.

244. Beatty, R.; Mendez, K. L.; Schreiber, L. H. J.; et al. Soft robot-mediated autonomous adaptation to fibrotic capsule formation for improved drug delivery. Sci. Robot. 2023, 8, eabq4821.

245. Grube, M.; Wieck, J. C.; Seifried, R. Comparison of modern control methods for soft robots. Sensors 2022, 22, 9464.

246. Tonkens, S.; Lorenzetti, J.; Pavone, M. Soft robot optimal control via reduced order finite element models. In: 2021 IEEE International Conference on Robotics and Automation (ICRA); Xi’an, China. IEEE; 2021. pp. 12010-6.

247. Ding, L.; Niu, L.; Su, Y.; et al. Dynamic finite element modeling and simulation of soft robots. Chin. J. Mech. Eng. 2022, 35, 701.

248. Youssef, S. M.; Soliman, M.; Saleh, M. A.; Mousa, M. A.; Elsamanty, M.; Radwan, A. G. Underwater soft robotics: a review of bioinspiration in design, actuation, modeling, and control. Micromachines 2022, 13, 110.

249. Vikas, V.; Grover, P.; Trimmer, B. Model-free control framework for multi-limb soft robots. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); Hamburg, Germany. IEEE; 2015. pp. 1111-6.

250. Li, Y.; Ang, K. H.; Chong, G. C. Y. PID control system analysis and design. IEEE. Control. Syst. May. 2006, 26, 32-41.

251. Isidro, I. A.; Pais, D. A. M.; Alves, P. M.; Carrondo, M. J. T. 2.64 - Online control strategies. In: Comprehensive Biotechnology. Elsevier; 2019. pp. 943-51.

252. Landau, I. D.; Lozano, R.; M’Saad, M.; Karimi, A. Adaptive control: algorithms, analysis and applications. 2nd edition. London: Springer; 2011.

253. Zhang, D.; Wei, B. A review on model reference adaptive control of robotic manipulators. Annu. Rev. Control. 2017, 43, 188-98.

254. Singh, R.; Bhushan, B. Reinforcement learning-based model-free controller for feedback stabilization of robotic systems. IEEE. Trans. Neural. Netw. Learn. Syst. 2023, 34, 7059-73.

255. Lewis, F. L.; Vrabie, D. Reinforcement learning and adaptive dynamic programming for feedback control. IEEE. Circuits. Syst. Mag. 2009, 9, 32-50.

256. Li, G.; Shintake, J.; Hayashibe, M. Deep reinforcement learning framework for underwater locomotion of soft robot. In: 2021 IEEE International Conference on Robotics and Automation (ICRA); Xi’an, China. IEEE; 2021. pp. 12033-9.

257. Thuruthel, T. G.; Falotico, E.; Manti, M.; Laschi, C. Stable open loop control of soft robotic manipulators. IEEE. Robot. Autom. Lett. 2018, 3, 1292-8.

258. Fei, Y.; Xu, H. Modeling and motion control of a soft robot. IEEE. Trans. Ind. Electron. 2017, 64, 1737-42.

259. Precup, R.; Radac, M.; Roman, R.; Petriu, E. M. Model-free sliding mode control of nonlinear systems: algorithms and experiments. Inform. Sci. 2017, 381, 176-92.

260. Vikas, V.; Cohen, E.; Grassi, R.; Sozer, C.; Trimmer, B. Design and locomotion control of a soft robot using friction manipulation and motor–tendon actuation. IEEE. Trans. Robot. 2016, 32, 949-59.

261. Li, M.; Kang, R.; Branson, D. T.; Dai, J. S. Model-free control for continuum robots based on an adaptive Kalman filter. IEEE/ASME. Trans. Mechatron. 2018, 23, 286-97.

262. Patterson, Z. J.; Santina, C. D. R. D.; Modeling,. In: 2024 IEEE International Conference on Robotics and Automation (ICRA); Yokohama, Japan. IEEE; 2024, pp. 14995-5001.

263. Zheng, Z.; Kumar, P.; Chen, Y.; et al. Model-based control of planar piezoelectric inchworm soft robot for crawling in constrained environments. In: 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft); Edinburgh, United Kingdom. IEEE; 2022. pp. 693-8.

264. Li, Y.; Ang, K. H.; Chong, G. C. Y. PID control system analysis and design. IEEE. Control. Syst. May. 2006, 26, 32-41.

265. Campo, A. B. PID control design. In: Katsikis V, editor. MATLAB - A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1. InTech; 2012. Available from: http://www.intechopen.com/books/matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1/pid-control-design. [Last accessed on 14 Jan 2025].

266. Borase, R. P.; Maghade, D. K.; Sondkar, S. Y.; Pawar, S. N. A review of PID control, tuning methods and applications. Int. J. Dynam. Control. 2021, 9, 818-27.

267. Plum, F.; Labisch, S.; Dirks, J. H. SAUV-A bio-inspired soft-robotic autonomous underwater vehicle. Front. Neurorobot. 2020, 14, 8.

268. Li, H.; Xu, Y.; Zhang, C.; Yang, H. Kinematic modeling and control of a novel pneumatic soft robotic arm. Chin. J. Aeronaut. 2022, 35, 310-9.

269. Dumont, G. A.; Huzmezan, M. Concepts, methods and techniques in adaptive control. In: Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301); Anchorage, USA. IEEE; 2002. pp. 1137-50.

270. Kaufman, H.; Bar-Kana, I.; Sobel, K. Direct adaptive control algorithms: theory and applications. New York, NY: Springer US; 1994.

271. Tonietti, G.; Bicchi, A. Adaptive simultaneous position and stiffness control for a soft robot arm. In: IEEE/RSJ International Conference on Intelligent Robots and System; Lausanne, Switzerland. IEEE; 2002. pp. 1992-7.

272. Xu, F.; Wang, H.; Chen, W.; Wang, J. Adaptive visual servoing control for an underwater soft robot. Assem. Autom. 2018, 38, 669-77.

273. Arulkumaran, K.; Deisenroth, M. P.; Brundage, M.; Bharath, A. A. Deep reinforcement learning: a brief survey. IEEE. Signal. Process. Mag. 2017, 34, 26-38.

274. Joshi, D. J.; Kale, I.; Gandewar, S.; Korate, O.; Patwari, D.; Patil, S. Reinforcement learning: a survey. In: Swain D, Pattnaik PK, Athawale T, editors. Machine learning and information processing. Singapore: Springer; 2021. pp. 297-308.

275. Ishige, M.; Umedachi, T.; Taniguchi, T.; Kawahara, Y. Exploring behaviors of caterpillar-like soft robots with a central pattern generator-based controller and reinforcement learning. Soft. Robot. 2019, 6, 579-94.

276. Wang, J.; Chortos, A. Control strategies for soft robot systems. Adv. Intell. Syst. 2022, 4, 2100165.

277. Mavrovouniotis, M.; Chang, S. Hierarchical neural networks. Comput. Chem. Eng. 1992, 16, 347-69.

278. Jain, L. C.; Seera, M.; Lim, C. P.; Balasubramaniam, P. A review of online learning in supervised neural networks. Neural. Comput. Appl. 2014, 25, 491-509.

279. Psichogios, D. C.; Ungar, L. H. Direct and indirect model based control using artificial neural networks. Ind. Eng. Chem. Res. 1991, 30, 2564-73.

280. Narendra, K. S.; Mukhopadhyay, S. Adaptive control using neural networks and approximate models. IEEE. Trans. Neural. Netw. 1997, 8, 475-85.

281. Hecht-Nielsen, R. III.3 - Theory of the Backpropagation Neural Network. In: Neural networks for perception. Elsevier; 1992. pp. 65-93.

282. Red’ko, V. G.; Prokhorov, D. V.; Burtsev, M. S. Theory of functional systems, adaptive critics and neural networks. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541); Budapest, Hungary. IEEE; 2004. pp. 1787-92.

283. Slotine, J. E.; Sanner, R. M. Neural networks for adaptive control and recursive identification: a theoretical framework. In: Trentelman HL, Willems JC, editors. Essays on control. Boston: Birkhäuser; 1993. pp. 381-436.

284. Low, J. H.; Khin, P. M.; Han, Q. Q.; et al. Sensorized reconfigurable soft robotic gripper system for automated food handling. IEEE/ASME. Trans. Mechatronics. 2022, 27, 3232-43.

285. Somnox. Somnox, Breathe, relax, sleep. Available from: https://somnox.com/. [Last accessed on 14 Jan 2025].

286. Awad, L. N.; Esquenazi, A.; Francisco, G. E.; Nolan, K. J.; Jayaraman, A. The ReWalk ReStore™ soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation. J. Neuroeng. Rehabil. 2020, 17, 80.

287. Squishy Robotics. Life-saving, Cost-saving information in real time. Available from: https://squishy-robotics.com/. [Last accessed on 14 Jan 2025].

288. Mitchell, S. K.; Wang, X.; Acome, E.; et al. An easy-to-implement toolkit to create versatile and high-performance HASEL actuators for untethered soft robots. Adv. Sci. 2019, 6, 1900178.

289. Amend, J.; Cheng, N.; Fakhouri, S.; Culley, B. Soft robotics commercialization: jamming grippers from research to product. Soft. Robot. 2016, 3, 213-22.

290. Olkkola, L. S.; Townsend, V. M.; Quigley, C. Defining potential market growth of innovative applications for military and commercial use in soft robotics. Defense Technical Information Center. 2022. Available from: https://apps.dtic.mil/sti/citations/AD1160075. [Last accessed on 14 Jan 2025].

291. Wang, Y.; Wang, G.; Ge, W.; Duan, J.; Chen, Z.; Wen, L. Perceived safety assessment of interactive motions in human-soft robot interaction. Biomimetics 2024, 9, 58.

292. Sundaravadivel, P.; Ghosh, P. K.; Suwal, B. IoT-enabled soft robotics for electrical engineers. In: Proceedings of the Great Lakes Symposium on VLSI 2022. Irvine CA USA: ACM; 2022. pp. 329-32.

293. Golecki, H. M.; Robinson, J.; Cvetkovic, C.; Walsh, C. Empowering students in medical device design: an interdisciplinary soft robotics course. Biomed. Eng. Education. 2024, 4, 399-408.

294. Lamer, S.; Adnan, A.; McNeela, E.; Tran, T.; Golecki, H. Using drawings to understand impacts of soft robotics activity on elementary age students’ perceptions of robots. In: 2022 IEEE Frontiers in Education Conference (FIE); Uppsala, Sweden. IEEE; 2022. p. 1-5.

295. Medina, D. R.; Kim, J.; Ohk, K.; et al. Pre-college robotics: best practices for adapting research to outreach. In: 2023 ASEE Annual Conference & Exposition. 2023.

296. Greer, A. H.; Vauclain, W.; Lee, E.; et al. Design of a guided inquiry classroom activity to investigate effects of chemistry on physical properties of elastomers. J. Chem. Educ. 2021, 98, 915-23.

297. Finio, B.; Shepherd, R.; Lipson, H. Air-powered soft robots for K-12 classrooms. In: 2013 IEEE Integrated STEM Education Conference (ISEC). Princeton, USA. IEEE; 2013. p. 1-6.

298. Greer, A. H.; King, E.; Lee, E. H.; et al. Soluble polymer pneumatic networks and a single-pour system for improved accessibility and durability of soft robotic actuators. Soft. Robot. 2021, 8, 144-51.

299. Sardesai, A. N.; Segel, X. M.; Baumholtz, M. N.; et al. Design and characterization of edible soft robotic candy actuators. MRS. Adv. 2018, 3, 3003-9.

300. Lee, D. J.; Ryu, S. R. The influence of fiber aspect ratio on the tensile and tear properties of short-fiber reinforced rubber. 1999. Available from: https://api.semanticscholar.org/CorpusID:45044228. [Last accessed on 14 Jan 2025].

301. Motsoeneng, T.; Magagula, S.; Mohapi, M.; Lebelo, K.; Sefadi, J.; Mochane, M. 7 - Elastomer matrix based natural fiber composites. In: Fiber Reinforced Composites. Elsevier; 2021. pp. 167-85.

302. Yasa, O.; Toshimitsu, Y.; Michelis, M. Y.; et al. An overview of soft robotics. Annu. Rev. Control. Robot. Auton. Syst. 2023, 6, 1-29.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/