REFERENCES

1. Neuschwander-Tetri BA. Trace elements and the liver. In: Rodes J, Benhamou JP, Rizzetto M, Reichen J, Blei A, editors. Textbook in hepatology: from basic science to clinical practice, 3rd edition, 2007 Oxford: Blackwell. pp. 233-240. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=xfpS5XMb9mgC&oi=fnd&pg=PP2&dq=Textbook+in+hepatology:+from+basic+science+to+clinical+practice,+3rd+edition,+2007+Oxford:+Blackwell&ots=DlMU6WA1eH&sig=xhvwuv-BfPRCEE9RxmNHGoaz_5Y#v=onepage&q=Textbook%20in%20hepatology%3A%20from%20basic%20science%20to%20clinical%20practice%2C%203rd%20edition%2C%202007%20Oxford%3A%20Blackwell&f=false.

2. Susnea I, Weiskirchen R. Trace metal imaging in diagnostic of hepatic metal disease. Mass Spectrom Rev 2016;35:666-86.

3. Anderson GJ, Bardou-Jacquet E. Revisiting hemochromatosis: genetic vs. phenotypic manifestations. Ann Transl Med 2021;9:731.

4. Yang J, Hirai Y, Iida K, et al. Integrated-gut-liver-on-a-chip platform as an in vitro human model of non-alcoholic fatty liver disease. Commun Biol 2023;6:310.

5. Witt B, Schaumlöffel D, Schwerdtle T. Subcellular localization of copper-cellular bioimaging with focus on neurological disorders. Int J Mol Sci 2020;21:2341.

6. He P, Li H, Liu C, et al. U-shaped association between dietary copper intake and new-onset hypertension. Clin Nutr 2022;41:536-42.

7. Shi Y, Hu H, Wu Z, et al. Associations between dietary copper intake and hypertriglyceridemia among children and adolescents in the US. Nutr Metab Cardiovasc Dis 2023;33:809-16.

8. Liu Y, Tan L, Kuang Y, et al. A national cross-sectional analysis of dietary copper intake and abdominal aortic calcification in the US adults: NHANES 2013-2014. Nutr Metab Cardiovasc Dis 2023;33:1941-50.

9. Yang L, Chen X, Cheng H, Zhang L. Dietary copper intake and risk of stroke in adults: a case-control study based on national health and nutrition examination survey 2013-2018. Nutrients 2022;14:409.

10. Stefan N, Lonardo A, Targher G. Role of steatotic liver disease in prediction and prevention of cardiometabolic diseases. Nat Rev Gastroenterol Hepatol 2024;21:136-7.

11. Loria P, Lonardo A, Leonardi F, et al. Non-organ-specific autoantibodies in nonalcoholic fatty liver disease: prevalence and correlates. Dig Dis Sci 2003;48:2173-81.

12. Song M, Zhou Z, Chen T, Zhang J, McClain CJ. Copper deficiency exacerbates bile duct ligation-induced liver injury and fibrosis in rats. J Pharmacol Exp Ther 2011;339:298-306.

13. Dhanraj P, Venter C, Bester MJ, Oberholzer HM. Induction of hepatic portal fibrosis, mitochondria damage, and extracellular vesicle formation in Sprague-Dawley rats exposed to copper, manganese, and mercury, alone and in combination. Ultrastruct Pathol 2020;44:182-92.

14. Altarelli M, Ben-Hamouda N, Schneider A, Berger MM. Copper deficiency: causes, manifestations, and treatment. Nutr Clin Pract 2019;34:504-13.

15. Morrell A, Tallino S, Yu L, Burkhead JL. The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life 2017;69:263-70.

16. Członkowska A, Litwin T, Dusek P, et al. Wilson disease. Nat Rev Dis Primers 2018;4:21.

17. Roberts EA, Schilsky ML. Current and Emerging Issues in Wilson’s Disease. N Engl J Med 2023;389:922-38.

18. Ovchinnikova EV, Garbuz MM, Ovchinnikova AA, Kumeiko VV. Epidemiology of wilson’s disease and pathogenic variants of the ATP7B gene leading to diversified protein disfunctions. Int J Mol Sci 2024;25:2402.

19. Stremmel W, Weiskirchen R. Therapeutic strategies in Wilson disease: pathophysiology and mode of action. Ann Transl Med 2021;9:732.

20. Dang J, Chevalier K, Letavernier E, et al. Kidney involvement in Wilson’s disease: a review of the literature. Clin Kidney J 2024;17:sfae058.

21. Stremmel W, Merle U, Weiskirchen R. Clinical features of Wilson disease. Ann Transl Med 2019;7:S61.

22. Choudhury N, Quraishi SB, Atiqullah A, Khan MSI, Al Mahtab M, Akbar SM. High prevalence of wilson’s diseases with low prevalence of kayser-fleischer rings among patients with cryptogenic chronic liver diseases in bangladesh. Euroasian J Hepatogastroenterol 2019;9:67-70.

23. Mak CM, Lam CW, Tam S. Diagnostic accuracy of serum ceruloplasmin in Wilson disease: determination of sensitivity and specificity by ROC curve analysis among ATP7B-genotyped subjects. Clin Chem 2008;54:1356-62.

24. García-Villarreal L, Hernández-Ortega A, Sánchez-Monteagudo A, et al. Wilson disease: revision of diagnostic criteria in a clinical series with great genetic homogeneity. J Gastroenterol 2021;56:78-89.

25. Fanni D, Guido M, Gerosa C, et al. Liver changes in Wilson’s disease: the full spectrum. A report of 127 biopsies from 43 patients. Eur Rev Med Pharmacol Sci 2021;25:4336-44.

26. Mahmood S, Inada N, Izumi A, Kawanaka M, Kobashi H, Yamada G. Wilson’s disease masquerading as nonalcoholic steatohepatitis. N Am J Med Sci 2009;1:74-6.

27. Liggi M, Murgia D, Civolani A, Demelia E, Sorbello O, Demelia L. The relationship between copper and steatosis in Wilson’s disease. Clin Res Hepatol Gastroenterol 2013;37:36-40.

28. Alqahtani SA, Chami R, Abuquteish D, et al. Hepatic ultrastructural features distinguish paediatric Wilson disease from NAFLD and autoimmune hepatitis. Liver Int 2022;42:2482-91.

29. Sobesky R, Guillaud O, Bouzbib C, et al. Non-invasive diagnosis and follow-up of rare genetic liver diseases. Clin Res Hepatol Gastroenterol 2022;46:101768.

30. Litwin T, Bembenek J, Antos A, et al. Liver transplantation as a treatment for Wilson's disease with neurological presentation: a systematic literature review. Acta Neurol Belg 2022;122:505-18.

31. Cave V, Di Dato F, Iorio R. Wilson’s disease with acute hepatic onset: how to diagnose and treat it. Children (Basel) 2024;11:68.

32. Antos A, Członkowska A, Smolinski L, et al. Early neurological deterioration in Wilson's disease: a systematic literature review and meta-analysis. Neurol Sci 2023;44:3443-55.

33. Litwin T, Antos A, Bembenek J, et al. Copper deficiency as wilson’s disease overtreatment: a systematic review. Diagnostics (Basel) 2023;13:2424.

34. Kumar P, Hamza N, Madhok B, et al. Copper deficiency after gastric bypass for morbid obesity: a systematic review. Obes Surg 2016;26:1335-42.

35. Ramani PK, Parayil Sankaran B. Menkes disease. Available from: https://europepmc.org/books/n/statpearls/article-24982/?extid=29262003&src=med.

36. Duncan A, Talwar D, McMillan DC, Stefanowicz F, O’Reilly DS. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am J Clin Nutr 2012;95:64-71.

37. Kharel Z, Kharel H, Phatak PD. Diagnosing aceruloplasminemia: navigating through red herrings. Ann Hematol 2024;103:2173-6.

38. Corradini E, Buzzetti E, Dongiovanni P, et al. Ceruloplasmin gene variants are associated with hyperferritinemia and increased liver iron in patients with NAFLD. J Hepatol 2021;75:506-13.

39. King D, Siau K, Senthil L, Kane KF, Cooper SC. Copper deficiency myelopathy after upper gastrointestinal surgery. Nutr Clin Pract 2018;33:515-9.

40. Griffith DP, Liff DA, Ziegler TR, Esper GJ, Winton EF. Acquired copper deficiency: a potentially serious and preventable complication following gastric bypass surgery. Obesity (Silver Spring) 2009;17:827-31.

41. Kiela PR, Ghishan FK. Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol 2016;30:145-59.

42. Wang Y, Pei P, Yang K, Guo L, Li Y. Copper in colorectal cancer: from copper-related mechanisms to clinical cancer therapies. Clin Transl Med 2024;14:e1724.

43. Horn D, Barrientos A. Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life 2008;60:421-9.

44. Antonucci L, Porcu C, Iannucci G, Balsano C, Barbaro B. Non-alcoholic fatty liver disease and nutritional implications: special focus on copper. Nutrients 2017;9:1137.

45. Gale J, Aizenman E. The physiological and pathophysiological roles of copper in the nervous system. Eur J Neurosci 2024;60:3505-43.

46. Cheng F, Peng G, Lu Y, et al. Relationship between copper and immunity: the potential role of copper in tumor immunity. Front Oncol 2022;12:1019153.

47. Xue Q, Kang R, Klionsky DJ, Tang D, Liu J, Chen X. Copper metabolism in cell death and autophagy. Autophagy 2023;19:2175-95.

48. Guo CH, Chen PC, Ko WS. Status of essential trace minerals and oxidative stress in viral hepatitis C patients with nonalcoholic fatty liver disease. Int J Med Sci 2013;10:730-7.

49. Porcu C, Antonucci L, Barbaro B, et al. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma. Oncotarget 2018;9:9325-43.

50. Chen C, Zhou Q, Yang R, et al. Copper exposure association with prevalence of non-alcoholic fatty liver disease and insulin resistance among US adults (NHANES 2011-2014). Ecotoxicol Environ Saf 2021;218:112295.

51. Zhang D, Wu S, Lan Y, et al. Essential metal mixtures exposure and NAFLD: A cohort-based case-control study in northern Chinese male adults. Chemosphere 2023;339:139598.

52. Hou JZ, Wu QW, Zhang L. Association between micronutrients intake and metabolic-associated fatty liver disease: a cross-sectional study based on the National Health and Nutrition Examination Survey. J Nutr Sci 2023;12:e117.

53. Li L, Yi Y, Shu X, Li J, Kang H, Chang Y. The correlation between serum copper and non-alcoholic fatty liver disease in american adults: an analysis based on NHANES 2011 to 2016. Biol Trace Elem Res 2024;202:4398-409.

54. Aigner E, Theurl I, Haufe H, et al. Copper availability contributes to iron perturbations in human nonalcoholic fatty liver disease. Gastroenterology 2008;135:680-8.

55. Aigner E, Strasser M, Haufe H, et al. A role for low hepatic copper concentrations in nonalcoholic Fatty liver disease. Am J Gastroenterol 2010;105:1978-85.

56. Nobili V, Siotto M, Bedogni G, et al. Levels of serum ceruloplasmin associate with pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 2013;56:370-5.

57. Church SJ, Begley P, Kureishy N, et al. Deficient copper concentrations in dried-defatted hepatic tissue from ob/ob mice: a potential model for study of defective copper regulation in metabolic liver disease. Biochem Biophys Res Commun 2015;460:549-54.

58. Stättermayer AF, Traussnigg S, Aigner E, et al. Low hepatic copper content and PNPLA3 polymorphism in non-alcoholic fatty liver disease in patients without metabolic syndrome. J Trace Elem Med Biol 2017;39:100-7.

59. Mendoza M, Caltharp S, Song M, et al. Low hepatic tissue copper in pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr 2017;65:89-92.

60. Fujii Y, Nanashima A, Hiyoshi M, Imamura N, Yano K, Hamada T. Risk factors for development of nonalcoholic fatty liver disease after pancreatoduodenectomy. Ann Gastroenterol Surg 2017;1:226-31.

61. El-Rayah EA, Twomey PJ, Wallace EM, McCormick PA. Both α-1-antitrypsin Z phenotypes and low caeruloplasmin levels are over-represented in alcohol and nonalcoholic fatty liver disease cirrhotic patients undergoing liver transplant in Ireland. Eur J Gastroenterol Hepatol 2018;30:364-7.

62. Lee SH, Kim MJ, Kim YS, et al. Low hair copper concentration is related to a high risk of nonalcoholic fatty liver disease in adults. J Trace Elem Med Biol 2018;50:28-33.

63. Nasr P, Ignatova S, Lundberg P, Kechagias S, Ekstedt M. Low hepatic manganese concentrations in patients with hepatic steatosis - a cohort study of copper, iron and manganese in liver biopsies. J Trace Elem Med Biol 2021;67:126772.

64. Lan Y, Wu S, Wang Y, et al. Association between blood copper and nonalcoholic fatty liver disease according to sex. Clin Nutr 2021;40:2045-52.

65. Zhang H, Zheng KI, Zhu PW, et al. Lower serum copper concentrations are associated with higher prevalence of nonalcoholic steatohepatitis: a matched case-control study. Eur J Gastroenterol Hepatol 2022;34:838-43.

66. Kamada Y, Takahashi H, Ogawa Y, et al. Japan study group of NAFLD (JSG-NAFLD). characterization of nutrient intake in biopsy-confirmed NAFLD patients. Nutrients 2022;14:3453.

67. Xie L, Yuan Y, Xu S, et al. Downregulation of hepatic ceruloplasmin ameliorates NAFLD via SCO1-AMPK-LKB1 complex. Cell Rep 2022;41:111498.

68. Chen Y, Wu C, Li G, Wang W, Tang S. Comparison of copper concentration between non-alcoholic fatty liver disease patients and normal individuals: a meta-analysis. Front Public Health 2023;11:1095916.

69. Tinkov AA, Korobeinikova TV, Morozova GD, et al. Association between serum trace element, mineral, and amino acid levels with non-alcoholic fatty liver disease (NAFLD) in adult women. J Trace Elem Med Biol 2024;83:127397.

70. Jiang Q, Wang N, Lu S, et al. Targeting hepatic ceruloplasmin mitigates nonalcoholic steatohepatitis by modulating bile acid metabolism. J Mol Cell Biol 2024:15.

71. Arefhosseini S, Pouretedal Z, Tutunchi H, Ebrahimi-Mameghani M. Serum copper, ceruloplasmin, and their relations to metabolic factors in nonalcoholic fatty liver disease: a cross-sectional study. Eur J Gastroenterol Hepatol 2022;34:443-8.

72. Liu K, Chen Y, Chen J, et al. Genetically determined circulating micronutrients and the risk of nonalcoholic fatty liver disease. Sci Rep 2024;14:1105.

73. Wei Y, Rector RS, Thyfault JP, Ibdah JA. Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J Gastroenterol 2008;14:193-9.

74. Ma Y, Lee G, Heo SY, Roh YS. Oxidative stress is a key modulator in the development of nonalcoholic fatty liver disease. Antioxidants (Basel) 2021;11:91.

75. Aigner E, Weiss G, Datz C. Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver. World J Hepatol 2015;7:177-88.

76. Harder NHO, Hieronimus B, Stanhope KL, et al. Effects of dietary glucose and fructose on copper, iron, and zinc metabolism parameters in humans. Nutrients 2020;12:2581.

77. Song M, Schuschke DA, Zhou Z, et al. High fructose feeding induces copper deficiency in Sprague-Dawley rats: a novel mechanism for obesity related fatty liver. J Hepatol 2012;56:433-40.

78. Troost FJ, Brummer RJ, Dainty JR, Hoogewerff JA, Bull VJ, Saris WH. Iron supplements inhibit zinc but not copper absorption in vivo in ileostomy subjects. Am J Clin Nutr 2003;78:1018-23.

79. Wei X, Song M, Yin X, et al. Effects of dietary different doses of copper and high fructose feeding on rat fecal metabolome. J Proteome Res 2015;14:4050-8.

80. Tallino S, Duffy M, Ralle M, Cortés MP, Latorre M, Burkhead JL. Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease. J Nutr Biochem 2015;26:996-1006.

81. Weiskirchen R. Targeting copper to combat macrophage-driven inflammation: a potential advanced therapeutic strategy. Signal Transduct Target Ther 2023;8:339.

82. Ballestri S, Mantovani A, Girolamo MD, Baldelli E, Capitelli M, Lonardo A. Liver fibrosis in nonalcoholic fatty liver disease patients: noninvasive evaluation and correlation with cardiovascular disease and mortality. Metab Target Organ Damage 2023;3:1.

83. Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022;375:1254-61.

84. Li SR, Bu LL, Cai L. Cuproptosis: lipoylated TCA cycle proteins-mediated novel cell death pathway. Signal Transduct Target Ther 2022;7:158.

85. Xiong C, Ling H, Hao Q, Zhou X. Cuproptosis: p53-regulated metabolic cell death? Cell Death Differ 2023;30:876-84.

86. Li J, Zhang Y, Ma X, Liu R, Xu C, He Q, Dong M. Identification and validation of cuproptosis-related genes for diagnosis and therapy in nonalcoholic fatty liver disease. Mol Cell Biochem 2024; doi: 10.1007/s11010-024-04957-7.

87. Li Y, Qi P, Song SY, et al. Elucidating cuproptosis in metabolic dysfunction-associated steatotic liver disease. Biomed Pharmacother 2024;174:116585.

88. Qu J, Wang Y, Wang Q. Cuproptosis: potential new direction in diabetes research and treatment. Front Endocrinol (Lausanne) 2024;15:1344729.

89. Liu N, Chen M. Crosstalk between ferroptosis and cuproptosis: From mechanism to potential clinical application. Biomed Pharmacother 2024;171:116115.

90. Wang R, Lv Y, Ni Z, et al. Intermittent hypoxia exacerbates metabolic dysfunction-associated fatty liver disease by aggravating hepatic copper deficiency-induced ferroptosis. FASEB J 2024;38:e23788.

91. Feng S, Tang D, Wang Y, et al. The mechanism of ferroptosis and its related diseases. Mol Biomed 2023;4:33.

92. Chen Y, Li X, Wang S, Miao R, Zhong J. Targeting iron metabolism and ferroptosis as novel therapeutic approaches in cardiovascular diseases. Nutrients 2023;15:591.

93. Zechner R, Zimmermann R, Eichmann TO, et al. FAT SIGNALS--lipases and lipolysis in lipid metabolism and signaling. Cell Metab 2012;15:279-91.

94. Homma T, Osaki T, Kobayashi S, Sato H, Fujii J. d-Cysteine supplementation partially protects against ferroptosis induced by xCT dysfunction via increasing the availability of glutathione. J Clin Biochem Nutr 2022;71:48-54.

95. Wooton-Kee CR, Jain AK, Wagner M, et al. Elevated copper impairs hepatic nuclear receptor function in Wilson’s disease. J Clin Invest 2015;125:3449-60.

96. Ballestri S, Nascimbeni F, Romagnoli D, Baldelli E, Lonardo A. The role of nuclear receptors in the pathophysiology, natural course, and drug treatment of NAFLD in humans. Adv Ther 2016;33:291-319.

97. Lonardo A. Association of NAFLD/NASH, and MAFLD/MASLD with chronic kidney disease: an updated narrative review. Metab Target Organ Damage 2024;4:16.

98. Hordyjewska A, Popiołek Ł, Kocot J. The many “faces” of copper in medicine and treatment. Biometals 2014;27:611-21.

99. Ma C, Han L, Zhu Z, Heng Pang C, Pan G. Mineral metabolism and ferroptosis in non-alcoholic fatty liver diseases. Biochem Pharmacol 2022;205:115242.

100. Song M, Li X, Zhang X, et al. Dietary copper-fructose interactions alter gut microbial activity in male rats. Am J Physiol Gastrointest Liver Physiol 2018;314:G119-30.

101. Song M, Vos MB, McClain CJ. Copper-fructose interactions: a novel mechanism in the pathogenesis of NAFLD. Nutrients 2018;10:1815.

102. Song M, Yuan F, Li X, et al. Analysis of sex differences in dietary copper-fructose interaction-induced alterations of gut microbial activity in relation to hepatic steatosis. Biol Sex Differ 2021;12:3.

Metabolism and Target Organ Damage
ISSN 2769-6375 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/