fig3

<i>Faecalibacterium prausnitzii</i> A2-165 metabolizes host- and media-derived chemicals and induces transcriptional changes in colonic epithelium in GuMI human gut microphysiological system

Figure 3. Metabolomics revealed specific metabolite changes attributed to the host, continuous flow, and F. prausnitzii A2-165. (A) The volcano plot of GuMI-NB vs. Static. P 2. Blue is significantly higher in static condition (Static) culture; red is significantly higher in GuMI-NB; (B) Metabolites mapped to glycolysis and Krebs cycle pathways. Metabolites highlighted in red, blue, and black are significantly higher, significantly lower, and not significantly changed in GuMI-NB vs. Static, respectively. Significance threshold: P 2. Metabolites in grey are not detected; (C) The volcano plot of metabolite changes in GuMI-FP vs. GuMI-NB. P 1.5. The rationale for lowering the threshold is that the continuous flow dilutes the produced metabolites. Therefore, a 50% change in the chemical concentration is considered significant; One-way ANOVA was performed for each compound in (B-D) to compare the differences between Static, GuMI-NB, and GuMI-FP. Note that the peak area ratio can not be used to compare the levels of different compounds; (E) Nucleoside hydrolase gene in the genome of F. prausnitzii A2-165. Gene ID: CG447_RS10420; accession ID of its predicted protein: C7H870 (UniProt). GuMI-NB: GuMI without bacteria; GuMI-FP: GuMI with F. prausnitzii.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/