fig2

<i>Faecalibacterium prausnitzii</i> A2-165 metabolizes host- and media-derived chemicals and induces transcriptional changes in colonic epithelium in GuMI human gut microphysiological system

Figure 2. Metabolite profile in the apical compartment in static condition (Static) and GuMI culture with and without bacteria. (A) The principal component analysis plot indicates a clear separation of the analyzed metabolome among the three groups. In total, 76 detected compounds were included; (B) A distance plot of all the samples shows the inter-batch variation. In total, four batches of GuMI experiments were carried out. The samples are from four experiments as follows: experiment 1: Static_1 and 2, GuMI-NB_1, GuMI-FP_1 and 2; experiment 2: Static_3, 4, and 5, GuMI-NB_2 and 3, GuMI-FP_3 and 4; experiment 3: Static_6, GuMI-NB_4 and 5, GuMI-FP_5 and 6; experiment 4: Static_7 and 8, GuMI-NB_6, 7, and 8, GuMI-FP_7 and 8; (C) Heatmap of detected metabolites in Static, GuMI-NB, and GuMI-FP. Clusters 1, 2, 3, and 4 indicate the metabolites accumulated in specific conditions. GuMI-NB: GuMI without bacteria; GuMI-FP: GuMI with F. prausnitzii.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/