REFERENCES

1. Erkosar B, Storelli G, Defaye A, Leulier F. Host-intestinal microbiota mutualism: “learning on the fly”. Cell Host Microbe 2013;13:8-14.

2. Erkosar B, Leulier F. Transient adult microbiota, gut homeostasis and longevity: novel insights from the Drosophila model. FEBS Lett 2014;588:4250-7.

3. Newell PD, Douglas AE. Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Appl Environ Microbiol 2014;80:788-96.

4. Hoang D, Kopp A, Chandler JA. Interactions between Drosophila and its natural yeast symbionts - Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship? PeerJ 2015;3:e1116.

5. Wong ACN, Vanhove AS, Watnick PI. The interplay between intestinal bacteria and host metabolism in health and disease: lessons from Drosophila melanogaster. Dis Model Mech 2016;9:271-81.

6. Trinder M, Daisley BA, Dube JS, Reid G. Drosophila melanogaster as a high-throughput model for host-microbiota interactions. Front Microbiol 2017;8:751.

7. Douglas AE. The Drosophila model for microbiome research. Lab Anim 2018;47:157-64.

8. Te Velde JH, Molthoff CFM, Scharloo W. The function of anal papillae in salt adaptation of Drosophila melanogaster larvae. J Evolution Biol 1988;1:139-53.

9. Stergiopoulos K, Cabrero P, Davies SA, Dow JAT. Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress. Physiol Genomics 2009;37:1-11.

10. Waddington CH. Canalization of development and genetic assimilation of acquired characters. Nature 1959;183:1654-5.

11. Long TAF, Rowe L, Agrawal AF. The effects of selective history and environmental heterogeneity on inbreeding depression in experimental populations of Drosophila melanogaster. Am Nat 2013;181:532-44.

12. Arbuthnott D, Rundle HD. Misalignment of natural and sexual selection among divergently adapted Drosophila melanogaster populations. Animal Behaviour 2014;87:45-51.

13. Broderick NA, Lemaitre B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes 2012;3:307-21.

14. Zheng J, Wittouck S, Salvetti E, et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020;70:2782-858.

15. Wong ACN, Chaston JM, Douglas AE. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J 2013;7:1922-32.

16. Blum JE, Fischer CN, Miles J, Handelsman J. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. mBio 2013;4:e00860-13.

17. Obadia B, Güvener ZT, Zhang V, et al. Probabilistic invasion underlies natural gut microbiome stability. Curr Biol 2017;27:1999-2006.e8.

18. Pais IS, Valente RS, Sporniak M, Teixeira L. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol 2018;16:e2005710.

19. Vandehoef C, Molaei M, Karpac J. Dietary adaptation of microbiota in Drosophila requires NF-κB-dependent control of the translational regulator 4E-BP. Cell Rep 2020;31:107736.

20. Charroux B, Royet J. Gut-microbiota interactions in non-mammals: what can we learn from Drosophila? Semin Immunol 2012;24:17-24.

21. Shin SC, Kim SH, You H, et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 2011;334:670-4.

22. Brummel T, Ching A, Seroude L, Simon AF, Benzer S. Drosophila lifespan enhancement by exogenous bacteria. Proc Natl Acad Sci U S A 2004;101:12974-9.

23. Sannino DR, Dobson AJ, Edwards K, Angert ER, Buchon N. The Drosophila melanogaster gut microbiota provisions thiamine to its host. mBio 2018;9:e00155-18.

24. Schretter CE, Vielmetter J, Bartos I, et al. A gut microbial factor modulates locomotor behaviour in Drosophila. Nature 2018;563:402-6.

25. Mair W, Piper MDW, Partridge L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 2005;3:e223.

26. Lee KP, Simpson SJ, Clissold FJ, et al. Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc Natl Acad Sci U S A 2008;105:2498-503.

27. Anagnostou C, Dorsch M, Rohlfs M. Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol Exp Appl 2010;136:1-11.

28. Carvalho M, Schwudke D, Sampaio JL, et al. Survival strategies of a sterol auxotroph. Development 2010;137:3675-85.

29. Piper MDW, Blanc E, Leitão-Gonçalves R, et al. A holidic medium for Drosophila melanogaster. Nat Methods 2014;11:100-5.

30. Sohal RS, Forster MJ. Caloric restriction and the aging process: a critique. Free Radic Biol Med 2014;73:366-82.

31. Wu Q, Yu G, Cheng X, et al. Sexual dimorphism in the nutritional requirement for adult lifespan in Drosophila melanogaster. Aging Cell 2020;19:e13120.

32. Zanco B, Mirth CK, Sgrò CM, Piper MDW. A dietary sterol trade-off determines lifespan responses to dietary restriction in Drosophila melanogaster females. Elife 2021;10:e62335.

33. Henry Y, Overgaard J, Colinet H. Dietary nutrient balance shapes phenotypic traits of Drosophila melanogaster in interaction with gut microbiota. Comp Biochem Physiol A Mol Integr Physiol 2020;241:110626.

34. Klepsatel P, Wildridge D, Gáliková M. Temperature induces changes in Drosophila energy stores. Sci Rep 2019;9:5239.

35. Osborne AJ, Dearden PK. A ‘phenotypic hangover’: the predictive adaptive response and multigenerational effects of altered nutrition on the transcriptome of Drosophila melanogaster. Environ Epigenet 2017;3:dvx019.

36. Duxbury EML, Chapman T. Sex-specific responses of life span and fitness to variation in developmental versus adult diets in Drosophila melanogaster. J Gerontol A Biol Sci Med Sci 2020;75:1431-8.

37. Stamps JA, Yang LH, Morales VM, Boundy-Mills KL. Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS One 2012;7:e42238.

38. Becher PG, Flick G, Rozpędowska E, et al. Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 2012;26:822-8.

39. Reuter M, Bell G, Greig D. Increased outbreeding in yeast in response to dispersal by an insect vector. Curr Biol 2007;17:R81-3.

40. Coluccio AE, Rodriguez RK, Kernan MJ, Neiman AM. The yeast spore wall enables spores to survive passage through the digestive tract of Drosophila. PLoS One 2008;3:e2873.

41. Ivnitsky SB, Maximova IA, Panchenko PL, et al. Microbiome affects the adaptation of Drosophila melanogaster to a high NaCl concentration. Biol Bull Rev 2019;9:465-74.

42. Dmitrieva AS, Ivnitsky SB, Maksimova IA, Panchenko PL, Kachalkin AV, Markov AV. Yeasts affect tolerance of Drosophila melanogaster to food substrate with high NaCl concentration. PLoS One 2019;14:e0224811.

43. Dmitrieva AS, Maksimova IA, Kachalkin AV, Markov AV. Age-related changes in the yeast component of the Drosophila melanogaster microbiome. Microbiology 2021;90:229-36.

44. Dmitrieva AS, Yakovleva EY, Maksimova IA, Belov AA, Markov AV. Changes in the symbiotic yeast of Drosophila melanogaster during adaptation to substrates with an increased NaCl content. Biol Bull Rev 2023;13:1-8.

45. Panchenko PL, Kornilova MB, Perfilieva KS, Markov AV. Contribution of symbiotic microbiota to adaptation of Drosophila melanogaster to an unfavorable growth medium. Biol Bull Russ Acad Sci 2017;44:345-54.

46. Dmitrieva AS, Ivnitsky SB, Markov AV. Adaptation of Drosophila melanogaster to unfavorable feed substrate is accompanied by expansion of trophic niche. Biol Bull Rev 2017;7:369-79.

47. Belkina EG, Naimark EB, Gorshkova AA, Markov AV. Does adaptation to different diets result in assortative mating? Ambiguous results from experiments on Drosophila. J Evol Biol 2018;31:1803-14.

48. Marchesi JR, Sato T, Weightman AJ, et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 1998;64:795-9.

49. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697-703.

50. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci U S A 1992;89:5685-9.

51. Lane DJ. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematic. New York: Wiley; 1991. pp. 115-75. Available from: https://search.worldcat.org/title/nucleic-acid-techniques-in-bacterial-systematics/oclc/22310197. [Last accessed on 27 Feb 2024].

52. Hugerth LW, Wefer HA, Lundin S, et al. DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies. Appl Environ Microbiol 2014;80:5116-23.

53. Merkel AY, Tarnovetskii IY, Podosokorskaya OA, Toshchakov SV. Analysis of 16S rRNA primer systems for profiling of thermophilic microbial communities. Microbiology 2019;88:671-80.

54. Vortsepneva E, Chevaldonné P, Klyukina A, et al. Microbial associations of shallow-water Mediterranean marine cave Solenogastres (Mollusca). PeerJ 2021;9:e12655.

55. Gavrilov SN, Korzhenkov AA, Kublanov IV, et al. Microbial communities of polymetallic deposits’ acidic ecosystems of continental climatic zone with high temperature contrasts. Front Microbiol 2019;10:1573.

56. Shannon CE, Weaver W. The mathematical theory of communication. Available from: https://pure.mpg.de/rest/items/item_2383164/component/file_2383163/content. [Last accessed on 27 Feb 2024].

57. Vainshtein BA. On some methods for assessing the similarity of biocenoses. Some Methods Assess Similarity Biocenoses 1976;46:981-6. (in Russian)

58. Praet J, Cnockaert M, Meeus I, Smagghe G, Vandamme P. Gilliamella intestini sp. nov., Gilliamella bombicola sp. nov., Gilliamella bombi sp. nov. and Gilliamella mensalis sp. nov.: four novel Gilliamella species isolated from the bumblebee gut. Syst Appl Microbiol 2017;40:199-204.

59. Galac MR, Lazzaro BP. Comparative pathology of bacteria in the genus Providencia to a natural host, Drosophila melanogaster. Microbes Infect 2011;13:673-83.

60. Kurtzman CP, Fell JW, Boekhout T. The yeasts: a taxonomic study. Elsevier; 2011. Available from: https://books.google.ru/books?hl=ru&lr=&id=yfg79rlIFIkC&oi=fnd&pg=PP2&ots=M0J-mwIryn&sig=dR-yEY7bsr-y7BLCvcRgG7iU0-s&redir_esc=y#v=onepage&q&f=false. [Last accessed on 27 Feb 2024].

61. Rattray FP, Eppert I. Cheese | Secondary cultures. In: Encyclopedia of dairy sciences. Elsevier; 2011. pp. 567-73. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123744074000686. [Last accessed on 27 Feb 2024].

62. Koňuchová M, Valík Ľ. Modelling the radial growth of Geotrichum candidum: effects of temperature and water activity. Microorganisms 2021;9:532.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/