REFERENCES

1. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 2019;17:203-18.

2. Lindsay JA, Holden MTG. Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct Integr Genomics 2006;6:186-201.

3. McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med 2017;90:269-81.

4. Brady A, Felipe-Ruiz A, Gallego del Sol F, Marina A, Quiles-Puchalt N, Penadés JR. Molecular basis of lysis-lysogeny decisions in gram-positive phages. Annu Rev Microbiol 2021;75:563-81.

5. Haaber J, Leisner JJ, Cohn MT, et al. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat Commun 2016;7:13333.

6. Ingmer H, Gerlach D, Wolz C. Temperate phages of Staphylococcus aureus. Microbiol Spectr 2019;7:10-1128.

7. Goerke C, Pantucek R, Holtfreter S, et al. Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J Bacteriol 2009;191:3462-8.

8. Rohmer C, Wolz C. The role of hlb-converting bacteriophages in Staphylococcus aureus host adaption. Microb Physiol 2021;31:109-22.

9. de Jong NWM, van Kessel KPM, van Strijp JAG. Immune evasion by Staphylococcus aureus. Microbiol Spectr 2019:7.

10. Sieber RN, Urth TR, Petersen A, et al. Phage-mediated immune evasion and transmission of livestock-associated methicillin-resistant Staphylococcus aureus in humans. Emerg Infect Dis 2020;26:2578-85.

11. Verkade E, Kluytmans J. Livestock-associated Staphylococcus aureus CC398: animal reservoirs and human infections. Infect Genet Evol 2014;21:523-30.

12. Leinweber H, Sieber RN, Larsen J, Stegger M, Ingmer H. Staphylococcal phages adapt to new hosts by extensive attachment site variability. mBio 2021;12:e0225921.

13. Chevallereau A, Pons BJ, van Houte S, Westra ER. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol 2022;20:49-62.

14. Gordillo Altamirano FL, Barr JJ. Phage therapy in the postantibiotic era. Clin Microbiol Rev 2019;32:e00066-18.

15. Ptashne M. Principles of a switch. Nat Chem Biol 2011;7:484-7.

16. Galkin VE, Yu X, Bielnicki J, Ndjonka D, Bell CE, Egelman EH. Cleavage of bacteriophage lambda cI repressor involves the RecA C-terminal domain. J Mol Biol 2009;385:779-87.

17. Roberts JW, Roberts CW. Proteolytic cleavage of bacteriophage lambda repressor in induction. Proc Natl Acad Sci U S A 1975;72:147-51.

18. Pedersen M, Lo Leggio L, Grossmann JG, Larsen S, Hammer K. Identification of quaternary structure and functional domains of the CI repressor from bacteriophage TP901-1. J Mol Biol 2008;376:983-96.

19. Frandsen KH, Rasmussen KK, Jensen MR, et al. Binding of the N-terminal domain of the lactococcal bacteriophage TP901-1 CI repressor to its target DNA: a crystallography, small angle scattering, and nuclear magnetic resonance study. Biochemistry 2013;52:6892-904.

20. Rasmussen KK, Frandsen KEH, Boeri Erba EB, et al. Structural and dynamics studies of a truncated variant of CI repressor from bacteriophage TP901-1. Sci Rep 2016;6:29574.

21. Pedersen M, Neergaard JT, Cassias J, et al. Repression of the lysogenic PR promoter in bacteriophage TP901-1 through binding of a CI-MOR complex to a composite OM-OR operator. Sci Rep 2020;10:8659.

22. Varming AK, Rasmussen KK, Zong Z, Thulstrup PW, Kilstrup M, Lo Leggio L. Flexible linker modulates the binding affinity of the TP901-1 CI phage repressor to DNA. FEBS J 2022;289:1135-48.

23. Rasmussen KK, Varming AK, Schmidt SN, et al. Structural basis of the bacteriophage TP901-1 CI repressor dimerization and interaction with DNA. FEBS Lett 2018;592:1738-50.

24. Rasmussen KK, Palencia A, Varming AK, et al. Revealing the mechanism of repressor inactivation during switching of a temperate bacteriophage. Proc Natl Acad Sci U S A 2020;117:20576-85.

25. Madsen PL, Johansen AH, Hammer K, Brøndsted L. The genetic switch regulating activity of early promoters of the temperate lactococcal bacteriophage TP901-1. J Bacteriol 1999;181:7430-8.

26. Das A, Mandal S, Hemmadi V, Ratre V, Biswas M. Studies on the gene regulation involved in the lytic-lysogenic switch in Staphylococcus aureus temperate bacteriophage Phi11. J Biochem 2020;168:659-68.

27. Biswas A, Mandal S, Sau S. The N-terminal domain of the repressor of Staphylococcus aureus phage Φ11 possesses an unusual dimerization ability and DNA binding affinity. PLoS One 2014;9:e95012.

28. Kristensen CS, Varming AK, Leinweber HAK, et al. Characterization of the genetic switch from phage ɸ13 important for Staphylococcus aureus colonization in humans. Microbiologyopen 2021;10:e1245.

29. Tang Y, Nielsen LN, Hvitved A, et al. Commercial biocides induce transfer of prophage Φ13 from human strains of Staphylococcus aureus to livestock CC398. Front Microbiol 2017;8:2418.

30. Winn MD, Ballard CC, Cowtan KD, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 2011;67:235-42.

31. Vagin A, Teplyakov A. MOLREP : an automated program for molecular replacement. J Appl Crystallogr 1997;30:1022-5.

32. Vagin AA, Steiner RA, Lebedev AA, et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr 2004;60:2184-95.

33. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010;66:486-501.

34. Lovell SC, Davis IW, Arendall WB III, et al. Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 2003;50:437-50.

35. Varadi M, Anyango S, Deshpande M, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022;50:D439-44.

36. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods 2022;19:679-82.

37. Rohmer C, Dobritz R, Tuncbilek-Dere D, et al. Influence of Staphylococcus aureus strain background on Sa3int phage life cycle switches. Viruses 2022;14:2471.

38. Rezaei Javan R, Ramos-Sevillano E, Akter A, Brown J, Brueggemann AB. Prophages and satellite prophages are widespread in Streptococcus and may play a role in pneumococcal pathogenesis. Nat Commun 2019;10:4852.

39. Matos RC, Lapaque N, Rigottier-Gois L, et al. Enterococcus faecalis prophage dynamics and contributions to pathogenic traits. PLoS Genet 2013;9:e1003539.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/