REFERENCES

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209-49.

2. Key Interdisciplinary Core Program for Colorectal Cancer. Follow-up recommendations in people with a family history of colorectal cancer not associated with hereditary syndromes. (in Spanish) Available from: https://www.astursalud.es/documents/35439/38460/2019%20Actualizaci%C3%B3n%20cribado%20familiar%20CCR%20en%20Asturias_ED03.pdf/c3e8a90d-ddcb-1ad7-7a1f-7a68cdc3903a. [Last accessed on 23 Nov 2023].

3. Spanish Agency Against Cancer. Anatomy of colon and rectum. (in Spanish) Available from: https://www.contraelcancer.es/es/todo-sobre-cancer/tipos-cancer/cancer-colon. [Last accessed on 23 Nov 2023].

4. National Cancer Institute. NCI dictionary of cancer terms: adenocarcinoma. Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/adenocarcinoma. [Last accessed on 23 Nov 2023].

5. Bähr I, Pörtner OJ, Glass M, et al. Characterization of natural killer cells in colorectal tumor tissue of rats fed a control diet or a high-fat diet. Ann Anat 2021;233:151586.

6. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet 2019;394:1467-80.

7. Carballal S, Moreira L, Balaguer F. Serrated polyps and serrated polyposis syndrome. Cir Esp 2013;91:141-8.

8. Anderson WF, Rosenberg PS, Prat A, Perou CM, Sherman ME. How many etiological subtypes of breast cancer: two, three, four, or more? J Natl Cancer Inst 2014;106:dju165.

9. Sawaki M, Shien T, Iwata H. TNM classification of malignant tumors (Breast Cancer Study Group). Jpn J Clin Oncol 2019;49:228-31.

10. Telang N, Katdare M. Preclinical in vitro models from genetically engineered mice for breast and colon cancer (Review). Oncol Rep 2011;25:1195-201.

11. Xiao Y, Ma D, Ruan M, et al. Mixed invasive ductal and lobular carcinoma has distinct clinical features and predicts worse prognosis when stratified by estrogen receptor status. Sci Rep 2017;7:10380.

12. Thanikachalam K, Khan G. Colorectal cancer and nutrition. Nutrients 2019;11:164.

13. Zhu JW, Charkhchi P, Adekunte S, Akbari MR. What is known about breast cancer in young women? Cancers 2023;15:1917.

14. Macrae FA. Colorectal cancer: epidemiology, risk factors, and protective factors. Available from: https://www.uptodate.com/contents/colorectal-cancer-epidemiology-risk-factors-and-protective-factors#!. [Last accessed on 23 Nov 2023].

15. Cicuéndez-Ávila RA. Publication: epidemiology of colon and rectal cancer in public hospitals in the Autonomous Community of Madrid. Survival analysis. University Complutense of Madrid; 2014. p. 1-332. (in Spanish). Available from: https://docta.ucm.es/entities/publication/a4b5cc4d-409c-4b66-a2f3-9cb3913ba072. [Last accessed on 23 Nov 2023].

16. Alexander DD, Cushing CA. Red meat and colorectal cancer: a critical summary of prospective epidemiologic studies. Obes Rev 2011;12:e472-93.

17. Tabung FK, Brown LS, Fung TT. Dietary patterns and colorectal cancer risk: a review of 17 years of evidence (2000-2016). Curr Colorectal Cancer Rep 2017;13:440-54.

18. World Cancer Research Fund/American Institute for Cancer Research. Continuous update project: diet, nutrition, physical activity and the prevention of cancer. Summary of strong evidence. Available from: https://www.wcrf.org/wp-content/uploads/2021/01/CUP-Strong-Evidence-Matrix.pdf. [Last accessed on 23 Nov 2023].

19. de Castro ANCL, Fernandes MR, de Carvalho DC, et al. Polymorphisms of xenobiotic-metabolizing and transporter genes, and the risk of gastric and colorectal cancer in an admixed population from the Brazilian Amazon. Am J Transl Res 2020;12:6626-36.

20. Irigaray P, Newby JA, Clapp R, et al. Lifestyle-related factors and environmental agents causing cancer: an overview. Biomed Pharmacother 2007;61:640-58.

21. Pericleous M, Mandair D, Caplin ME. Diet and supplements and their impact on colorectal cancer. J Gastrointest Oncol 2013;4:409-23.

22. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Alcohol consumption and ethyl carbamate. IARC Monogr Eval Carcinog Risks Hum 2010;96:3-1383.

23. Trama A, Stark D, Bozovic-Spasojevic I, et al. Cancer burden in adolescents and young adults in Europe. ESMO Open 2023;8:100744.

24. Zhang J, Lu Y, Zhang N, et al. Global burden of female breast cancer and its association with socioeconomic development status, 1990-2044. Cancer Rep 2023;6:e1827.

25. De Silva S, Tennekoon KH, Karunanayake EH. Interaction of gut microbiome and host microRNAs with the occurrence of colorectal and breast cancer and their impact on patient immunity. Onco Targets Ther 2021;14:5115-29.

26. Lu Y, Segelman J, Nordgren A, Lindström L, Frisell J, Martling A. Increased risk of colorectal cancer in patients diagnosed with breast cancer in women. Cancer Epidemiol 2016;41:57-62.

27. Nogacka AM, Gómez-Martín M, Suárez A, González-Bernardo O, de Los Reyes-Gavilán CG, González S. Xenobiotics formed during food processing: their relation with the intestinal microbiota and colorectal cancer. Int J Mol Sci 2019;20:2051.

28. Ruiz-Saavedra S, Zapico A, Del Rey CG, et al. Dietary xenobiotics derived from food processing: association with fecal mutagenicity and gut mucosal damage. Nutrients 2022;14:3482.

29. Zapico A, Arboleya S, Ruiz-Saavedra S, et al. Dietary xenobiotics, (poly)phenols and fibers: Exploring associations with gut microbiota in socially vulnerable individuals. Front Nutr 2022;9:1000829.

30. Abu-Ghazaleh N, Chua WJ, Gopalan V. Intestinal microbiota and its association with colon cancer and red/processed meat consumption. J Gastroenterol Hepatol 2021;36:75-88.

31. Kimble R, Gouinguenet P, Ashor A, et al. Effects of a mediterranean diet on the gut microbiota and microbial metabolites: a systematic review of randomized controlled trials and observational studies. Crit Rev Food Sci Nutr 2023;63:8698-719.

32. Gantenbein KV, Kanaka-Gantenbein C. Mediterranean diet as an antioxidant: the impact on metabolic health and overall wellbeing. Nutrients 2021;13:1951.

33. Bajic JE, Johnston IN, Howarth GS, Hutchinson MR. From the bottom-up: chemotherapy and gut-brain axis dysregulation. Front Behav Neurosci 2018;12:104.

34. Subramaniam CB, Bowen JM, Gladman MA, Lustberg MB, Mayo SJ, Wardill HR. The microbiota-gut-brain axis: an emerging therapeutic target in chemotherapy-induced cognitive impairment. Neurosci Biobehav Rev 2020;116:470-9.

35. Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiol Rev 2019;99:1877-2013.

36. Martínez-González MÁ, Hershey MS, Zazpe I, Trichopoulou A. Transferability of the mediterranean diet to non-mediterranean countries. what is and what is not the mediterranean diet. Nutrients 2017;9:1226.

37. Castelló A, Rodríguez-Barranco M, Fernández de Larrea N, et al. Adherence to the western, prudent and mediterranean dietary patterns and colorectal cancer risk: findings from the spanish cohort of the european prospective investigation into cancer and nutrition (EPIC-Spain). Nutrients 2022;14:3085.

38. Naja F, Hwalla N, Itani L, Karam S, Sibai AM, Nasreddine L. A Western dietary pattern is associated with overweight and obesity in a national sample of Lebanese adolescents (13-19 years): a cross-sectional study. Br J Nutr 2015;114:1909-19.

39. Buja A, Pierbon M, Lago L, Grotto G, Baldo V. Breast cancer primary prevention and diet: an umbrella review. Int J Environ Res Public Health 2020;17:4731.

40. Yiannakou I, Singer MR, Moore LL. Indices of Mediterranean diet adherence and breast cancer risk in a community-based cohort. Front Nutr 2023;10:1148075.

41. Ubago-Guisado E, Rodríguez-Barranco M, Ching-López A, et al. Evidence update on the relationship between diet and the most common cancers from the european prospective investigation into cancer and nutrition (EPIC) study: a systematic review. Nutrients 2021;13:3582.

42. Torres C, Barrios-Rodríguez R, Muñoz-Bravo C, Toledo E, Dierssen T, Jiménez-Moleón JJ. Mediterranean diet and risk of breast cancer: an umbrella review. Clin Nutr 2023;42:600-8.

43. Aranda-olmedo I, Rubio LA. Dietary legumes, intestinal microbiota, inflammation and colorectal cancer. J Funct Foods 2020;64:103707.

44. van den Brandt PA, Schulpen M. Mediterranean diet adherence and risk of postmenopausal breast cancer: results of a cohort study and meta-analysis. Int J Cancer 2017;140:2220-31.

45. Kohls M, Freisling H, Charvat H, et al. Impact of cumulative body mass index and cardiometabolic diseases on survival among patients with colorectal and breast cancer: a multi-centre cohort study. BMC Cancer 2022;22:546.

46. McDonald JA, Goyal A, Terry MB. Alcohol intake and breast cancer risk: weighing the overall evidence. Curr Breast Cancer Rep 2013;5:208-21.

47. Hamajima N, Hirose K, Tajima K, et al. Alcohol, tobacco and breast cancer - collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer 2002;87:1234-45.

48. Smith-Warner SA, Spiegelman D, Yaun SS, et al. Alcohol and breast cancer in women: a pooled analysis of cohort studies. JAMA 1998;279:535-40.

49. Hyun J, Han J, Lee C, Yoon M, Jung Y. Pathophysiological aspects of alcohol metabolism in the liver. Int J Mol Sci 2021;22:5717.

50. Bosron WF, Li TK. Genetic polymorphism of human liver alcohol and aldehyde dehydrogenases, and their relationship to alcohol metabolism and alcoholism. Hepatology 1986;6:502-10.

51. Crabb DW, Matsumoto M, Chang D, You M. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc Nutr Soc 2004;63:49-63.

52. Liu Y, Nguyen N, Colditz GA. Links between alcohol consumption and breast cancer: a look at the evidence. Womens Health 2015;11:65-77.

53. Dumitrescu RG, Shields PG. The etiology of alcohol-induced breast cancer. Alcohol 2005;35:213-25.

54. Tosti V, Bertozzi B, Fontana L. Health benefits of the mediterranean diet: metabolic and molecular mechanisms. J Gerontol A Biol Sci Med Sci 2018;73:318-26.

55. Romaguera D, Ward H, Wark PA, et al. Pre-diagnostic concordance with the WCRF/AICR guidelines and survival in European colorectal cancer patients: a cohort study. BMC Med 2015;13:107.

56. Shivappa N, Steck SE, Hurley TG, et al. A population-based dietary inflammatory index predicts levels of C-reactive protein in the Seasonal Variation of Blood Cholesterol Study (SEASONS). Public Health Nutr 2014;17:1825-33.

57. Zamora-Ros R, Barupal DK, Rothwell JA, et al. Dietary flavonoid intake and colorectal cancer risk in the European prospective investigation into cancer and nutrition (EPIC) cohort. Int J Cancer 2017;140:1836-44.

58. Serafini M, Del Rio D. Understanding the association between dietary antioxidants, redox status and disease: is the Total Antioxidant Capacity the right tool? Redox Rep 2004;9:145-52.

59. Bouvard V, Loomis D, Guyton KZ, et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol 2015;16:1599-600.

60. Jahurul MH, Jinap S, Ang SJ, et al. Dietary exposure to heterocyclic amines in high-temperature cooked meat and fish in Malaysia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010;27:1060-71.

61. de Kok TMCM, van Maanen JM. Evaluation of fecal mutagenicity and colorectal cancer risk. Mutat Res 2000;463:53-101.

62. Bastide NM, Naud N, Nassy G, et al. Red wine and pomegranate extracts suppress cured meat promotion of colonic mucin-depleted foci in carcinogen-induced rats. Nutr Cancer 2017;69:289-98.

63. Moorthy B, Chu C, Carlin DJ. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci 2015;145:5-15.

64. Larsson BK, Sahlberg GP, Eriksson AT, Busk LA. Polycyclic aromatic hydrocarbons in grilled food. J Agric Food Chem 1983;31:867-73.

65. López GPM, Morales Gómez P, Haza Duaso AI. Polycyclic aromatic hydrocarbons: toxicity, population exposure and foods involved. Rev Complut Cienc Vet 2016;10:1-15.

66. Alomirah H, Al-zenki S, Al-hooti S, et al. Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control 2011;22:2028-35.

67. Chiavarini M, Bertarelli G, Minelli L, Fabiani R. Dietary intake of meat cooking-related mutagens (HCAs) and risk of colorectal adenoma and cancer: a systematic review and meta-analysis. Nutrients 2017;9:514.

68. Martín-Calero A. Development and optimization of new methods for the analysis of heterocyclic amines. University of La Laguna; 2010. p. 1-402. (in Spanish) Available from: https://rebiun.baratz.es/OpacDiscovery/public/catalog/detail/b2FpOmNlbGVicmF0aW9uOmVzLmJhcmF0ei5yZW4vNjM3MDMyNg?tabId=1696324135194. [Last accessed on 23 Nov 2023].

69. Kondjoyan A, Chevolleau SS, Portanguen S, et al. Relation between crust development and heterocyclic aromatic amine formation when air-roasting a meat cylinder. Food Chem 2016;213:641-6.

70. Buła M, Przybylski W, Jaworska D, Kajak-Siemaszko K. Formation of heterocyclic aromatic amines in relation to pork quality and heat treatment parameters. Food Chem 2019;276:511-9.

71. Niehoff N, White AJ, McCullough LE, et al. Polycyclic aromatic hydrocarbons and postmenopausal breast cancer: an evaluation of effect measure modification by body mass index and weight change. Environ Res 2017;152:17-25.

72. Yao Y, Suo T, Andersson R, et al. Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas. Cochrane Database Syst Rev 2017;1:CD003430.

73. Feng Y, Spezia M, Huang S, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018;5:77-106.

74. Jaye K, Li CG, Bhuyan DJ. The complex interplay of gut microbiota with the five most common cancer types: from carcinogenesis to therapeutics to prognoses. Crit Rev Oncol Hematol 2021;165:103429.

75. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 2012;10:575-82.

76. Yachida S, Mizutani S, Shiroma H, et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med 2019;25:968-76.

77. Kim M, Vogtmann E, Ahlquist DA, et al. Fecal metabolomic signatures in colorectal adenoma patients are associated with gut microbiota and early events of colorectal cancer pathogenesis. mBio 2020;11:e03186-19.

78. Zhu J, Liao M, Yao Z, et al. Breast cancer in postmenopausal women is associated with an altered gut metagenome. Microbiome 2018;6:136.

79. Ingman WV. The gut microbiome: a new player in breast cancer metastasis. Cancer Res 2019;79:3539-41.

80. Mukherjee AG, Wanjari UR, Bradu P, et al. The crosstalk of the human microbiome in breast and colon cancer: a metabolomics analysis. Crit Rev Oncol Hematol 2022;176:103757.

81. Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 2017;103:45-53.

82. Abu-Sbeih H, Ali FS, Ge PS, et al. Patients with breast cancer may be at higher risk of colorectal neoplasia. Ann Gastroenterol 2019;32:400-6.

83. Yang J, Yu J. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein Cell 2018;9:474-87.

84. Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018;555:210-5.

85. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol 2019;16:690-704.

86. Ternes D, Karta J, Tsenkova M, Wilmes P, Haan S, Letellier E. Microbiome in colorectal cancer: how to get from meta-omics to mechanism? Trends Microbiol 2020;28:401-23.

87. Inamura K. Colorectal cancers: an update on their molecular pathology. Cancers 2018;10:26.

88. Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018;33:570-80.

89. Pan HW, Du LT, Li W, Yang YM, Zhang Y, Wang CX. Biodiversity and richness shifts of mucosa-associated gut microbiota with progression of colorectal cancer. Res Microbiol 2020;171:107-14.

90. Hibberd AA, Lyra A, Ouwehand AC, et al. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol 2017;4:e000145.

91. Flemer B, Warren RD, Barrett MP, et al. The oral microbiota in colorectal cancer is distinctive and predictive. Gut 2018;67:1454-63.

92. Richard ML, Liguori G, Lamas B, et al. Mucosa-associated microbiota dysbiosis in colitis associated cancer. Gut Microbes 2018;9:131-42.

93. Flemer B, Lynch DB, Brown JM, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 2017;66:633-43.

94. Gao R, Kong C, Huang L, et al. Mucosa-associated microbiota signature in colorectal cancer. Eur J Clin Microbiol Infect Dis 2017;36:2073-83.

95. Mori G, Rampelli S, Orena BS, et al. Shifts of faecal microbiota during sporadic colorectal carcinogenesis. Sci Rep 2018;8:10329.

96. Peters BA, Dominianni C, Shapiro JA, et al. The gut microbiota in conventional and serrated precursors of colorectal cancer. Microbiome 2016;4:69.

97. Liu W, Zhang R, Shu R, et al. Study of the relationship between microbiome and colorectal cancer susceptibility using 16SrRNA sequencing. Biomed Res Int 2020;2020:7828392.

98. Hale VL, Chen J, Johnson S, et al. Shifts in the fecal microbiota associated with adenomatous polyps. Cancer Epidemiol Biomarkers Prev 2017;26:85-94.

99. Shen XJ, Rawls JF, Randall T, et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes 2010;1:138-47.

100. Yang TW, Lee WH, Tu SJ, et al. Enterotype-based analysis of gut microbiota along the conventional adenoma-carcinoma colorectal cancer pathway. Sci Rep 2019;9:10923.

101. Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol 2014;10:766.

102. Saito K, Koido S, Odamaki T, et al. Metagenomic analyses of the gut microbiota associated with colorectal adenoma. PLoS One 2019;14:e0212406.

103. Xu J, Zheng Z, Yang L, et al. A novel promising diagnosis model for colorectal advanced adenoma and carcinoma based on the progressive gut microbiota gene biomarkers. Cell Biosci 2022;12:208.

104. Muguruma N, Okamoto K, Nakagawa T, et al. Molecular imaging of aberrant crypt foci in the human colon targeting glutathione S-transferase P1-1. Sci Rep 2017;7:6536.

105. Gamallat Y, Ren X, Walana W, et al. Probiotic Lactobacillus rhamnosus modulates the gut microbiome composition attenuates preneoplastic colorectal Aberrant crypt foci. J Funct Foods 2019;53:146-56.

106. Ohkawara S, Furuya H, Nagashima K, Asanuma N, Hino T. Oral administration of butyrivibrio fibrisolvens, a butyrate-producing bacterium, decreases the formation of aberrant crypt foci in the colon and rectum of mice. J Nutr 2005;135:2878-83.

107. Coker OO, Liu C, Wu WKK, et al. Altered gut metabolites and microbiota interactions are implicated in colorectal carcinogenesis and can be non-invasive diagnostic biomarkers. Microbiome 2022;10:35.

108. Mizutani S, Yamada T, Yachida S. Significance of the gut microbiome in multistep colorectal carcinogenesis. Cancer Sci 2020;111:766-73.

109. Yang Y, Misra BB, Liang L, et al. Integrated microbiome and metabolome analysis reveals a novel interplay between commensal bacteria and metabolites in colorectal cancer. Theranostics 2019;9:4101-14.

110. Rebersek M. Gut microbiome and its role in colorectal cancer. BMC Cancer 2021;21:1325.

111. Sinha R, Ahn J, Sampson JN, et al. Fecal microbiota, fecal metabolome, and colorectal cancer interrelations. PLoS One 2016;11:e0152126.

112. Goedert JJ, Jones G, Hua X, et al. Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study. J Natl Cancer Inst 2015;107:djv147.

113. Byrd DA, Vogtmann E, Wu Z, et al. Associations of fecal microbial profiles with breast cancer and nonmalignant breast disease in the Ghana Breast Health Study. Int J Cancer 2021;148:2712-23.

114. Aarnoutse R, Hillege LE, Ziemons J, et al. Intestinal microbiota in postmenopausal breast cancer patients and controls. Cancers 2021;13:6200.

115. Okubo R, Kinoshita T, Katsumata N, Uezono Y, Xiao J, Matsuoka YJ. Impact of chemotherapy on the association between fear of cancer recurrence and the gut microbiota in breast cancer survivors. Brain Behav Immun 2020;85:186-91.

116. Luu TH, Michel C, Bard JM, Dravet F, Nazih H, Bobin-Dubigeon C. Intestinal proportion of Blautia sp. is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutr Cancer 2017;69:267-75.

117. Terrisse S, Derosa L, Iebba V, et al. Intestinal microbiota influences clinical outcome and side effects of early breast cancer treatment. Cell Death Differ 2021;28:2778-96.

118. Donnet-Hughes A, Perez PF, Doré J, et al. Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc Nutr Soc 2010;69:407-15.

119. Urbaniak C, Cummins J, Brackstone M, et al. Microbiota of human breast tissue. Appl Environ Microbiol 2014;80:3007-14.

120. Parida S, Sharma D. The power of small changes: comprehensive analyses of microbial dysbiosis in breast cancer. Biochim Biophys Acta Rev Cancer 2019;1871:392-405.

121. Tzeng A, Sangwan N, Jia M, et al. Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer. Genome Med 2021;13:60.

122. Vitorino M, Alpuim Costa D, Vicente R, Caleça T, Santos C. Local breast microbiota: a “new” player on the block. Cancers 2022;14:3811.

123. Banerjee S, Tian T, Wei Z, et al. Distinct microbial signatures associated with different breast cancer types. Front Microbiol 2018;9:951.

124. Smith A, Pierre JF, Makowski L, et al. Distinct microbial communities that differ by race, stage, or breast-tumor subtype in breast tissues of non-Hispanic Black and non-Hispanic White women. Sci Rep 2019;9:11940.

125. Fuhrman BJ, Feigelson HS, Flores R, et al. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J Clin Endocrinol Metab 2014;99:4632-40.

126. Flores R, Shi J, Gail MH, Gajer P, Ravel J, Goedert JJ. Association of fecal microbial diversity and taxonomy with selected enzymatic functions. PLoS One 2012;7:e39745.

127. Yang J, Tan Q, Fu Q, et al. Gastrointestinal microbiome and breast cancer: correlations, mechanisms and potential clinical implications. Breast Cancer 2017;24:220-8.

128. Bruce E, Makaranka S, Urquhart G, Elsberger B. Does the gut microbiome environment influence response to systemic breast cancer treatment? Explor Target Antitumor Ther 2021;2:374-84.

129. De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016;65:1812-21.

130. Manor O, Dai CL, Kornilov SA, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun 2020;11:5206.

131. Asnicar F, Berry SE, Valdes AM, et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med 2021;27:321-32.

132. Ibragimova S, Ramachandran R, Ali FR, Lipovich L, Ho SB. Dietary patterns and associated microbiome changes that promote oncogenesis. Front Cell Dev Biol 2021;9:725821.

133. Gupta A, Dhakan DB, Maji A, et al. Association of flavonifractor plautii, a flavonoid-degrading bacterium, with the gut microbiome of colorectal cancer patients in India. mSystems 2019;4:e00438-19.

134. Zhang X, Yu D, Wu D, et al. Tissue-resident Lachnospiraceae family bacteria protect against colorectal carcinogenesis by promoting tumor immune surveillance. Cell Host Microbe 2023;31:418-32.e8.

135. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 2010;107:12204-9.

136. Geuking MB, Cahenzli J, Lawson MA, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011;34:794-806.

137. Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol 2018;19:e295-304.

138. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 2016;7:185.

139. Tao J, Li S, Gan RY, Zhao CN, Meng X, Li HB. Targeting gut microbiota with dietary components on cancer: Effects and potential mechanisms of action. Crit Rev Food Sci Nutr 2020;60:1025-37.

140. McRae MP. The benefits of dietary fiber intake on reducing the risk of cancer: an umbrella review of meta-analyses. J Chiropr Med 2018;17:90-6.

141. Mayo B, Vázquez L, Flórez AB. Equol: A bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects. Nutrients 2019;11:2231.

142. Flórez AB, Vázquez L, Rodríguez J, Redruello B, Mayo B. Transcriptional regulation of the equol biosynthesis gene cluster in Adlercreutzia equolifaciens DSM19450T. Nutrients 2019;11:993.

143. García-Villalba R, Beltrán D, Espín JC, Selma MV, Tomás-Barberán FA. Time course production of urolithins from ellagic acid by human gut microbiota. J Agric Food Chem 2013;61:8797-806.

144. Selma MV, Beltrán D, Luna MC, et al. Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin a from ellagic acid. Front Microbiol 2017;8:1521.

145. Hålldin E, Eriksen AK, Brunius C, et al. Factors explaining interpersonal variation in plasma enterolactone concentrations in humans. Mol Nutr Food Res 2019;63:e1801159.

146. Baldi S, Tristán Asensi M, Pallecchi M, Sofi F, Bartolucci G, Amedei A. Interplay between lignans and gut microbiota: nutritional, functional and methodological aspects. Molecules 2023;28:343.

147. Adlercreutz H. Lignans and human health. Crit Rev Clin Lab Sci 2007;44:483-525.

148. Messina M. Impact of soy foods on the development of breast cancer and the prognosis of breast cancer patients. Forsch Komplementmed 2016;23:75-80.

149. van Duursen MBM, Nijmeijer SM, de Morree ES, de Jong PC, van den Berg M. Genistein induces breast cancer-associated aromatase and stimulates estrogen-dependent tumor cell growth in in vitro breast cancer model. Toxicology 2011;289:67-73.

150. Fuhrman BJ, Teter BE, Barba M, et al. Equol status modifies the association of soy intake and mammographic density in a sample of postmenopausal women. Cancer Epidemiol Biomarkers Prev 2008;17:33-42.

151. Verheus M, van Gils CH, Keinan-Boker L, Grace PB, Bingham SA, Peeters PH. Plasma phytoestrogens and subsequent breast cancer risk. J Clin Oncol 2007;25:648-55.

152. Chi F, Wu R, Zeng YC, Xing R, Liu Y, Xu ZG. Post-diagnosis soy food intake and breast cancer survival: a meta-analysis of cohort studies. Asian Pac J Cancer Prev 2013;14:2407-12.

153. Martino C, Zaramela LS, Gao B, et al. Acetate reprograms gut microbiota during alcohol consumption. Nat Commun 2022;13:4630.

154. Ortega MA, Álvarez-Mon MA, García-Montero C, et al. Microbiota-gut-brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities. Mol Psychiatry 2023;28:2645-73.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/