REFERENCES

1. Mahony J, Murphy J, van Sinderen D. Lactococcal 936-type phages and dairy fermentation problems: from detection to evolution and prevention. Front Microbiol 2012;3:335.

2. Oliveira J, Mahony J, Hanemaaijer L, Kouwen TRHM, van Sinderen D. Biodiversity of bacteriophages infecting Lactococcus lactis starter cultures. J Dairy Sci 2018;101:96-105.

3. Samson JE, Moineau S. Bacteriophages in food fermentations: new frontiers in a continuous arms race. Annu Rev Food Sci Technol 2013;4:347-68.

4. Romero DA, Magill D, Millen A, Horvath P, Fremaux C. Dairy lactococcal and streptococcal phage-host interactions: an industrial perspective in an evolving phage landscape. FEMS Microbiol Rev 2020;44:909-32.

5. Charneco G, de Waal PP, van Rijswijck IMH, van Peij NNME, van Sinderen D, Mahony J. Bacteriophages in the dairy industry: a problem solved? Annu Rev Food Sci Technol 2023;14:367-85.

6. Mahony J, Kot W, Murphy J, et al. Investigation of the relationship between lactococcal host cell wall polysaccharide genotype and 936 phage receptor binding protein phylogeny. Appl Environ Microbiol 2013;79:4385-92.

7. Ainsworth S, Sadovskaya I, Vinogradov E, et al. Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. mBio 2014;5:e00880-14.

8. Hayes S, Vincentelli R, Mahony J, et al. Functional carbohydrate binding modules identified in evolved dits from siphophages infecting various gram-positive bacteria. Mol Microbiol 2018;110:777-95.

9. Sciara G, Bebeacua C, Bron P, et al. Structure of lactococcal phage p2 baseplate and its mechanism of activation. Proc Natl Acad Sci U S A 2010;107:6852-7.

10. Mahony J, Oliveira J, Collins B, et al. Genetic and functional characterisation of the lactococcal P335 phage-host interactions. BMC Genomics 2017;18:146.

11. Goulet A, Spinelli S, Mahony J, Cambillau C. Conserved and diverse traits of adhesion devices from siphoviridae recognizing proteinaceous or saccharidic receptors. Viruses 2020;12:512.

12. Leprince A, Mahillon J. Phage adsorption to gram-positive bacteria. Viruses 2023;15:196.

13. Broadbent JR, McMahon DJ, Welker DL, Oberg CJ, Moineau S. Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci 2003;86:407-23.

14. Forde A, Fitzgerald GF. Analysis of exopolysaccharide (EPS) production mediated by the bacteriophage adsorption blocking plasmid, pCI658, isolated from Lactococcus lactis ssp. cremoris HO2. Int Dairy J 1999;9:465-72.

15. Looijesteijn PJ, Trapet L, de Vries E, Abee T, Hugenholtz J. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int J Food Microbiol 2001;64:71-80.

16. Akçelik M, Şanlibaba P. Characterisation of an exopolysaccharide preventing phage adsorption in Lactococcus lactis subsp. cremoris MA39. Turkish J Vet Anim Sci 2002;26: 1151-6. Available from: https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=3309&context=veterinary. [Last accessed on 3 Jul 2023].

17. Deveau H, Van Calsteren MR, Moineau S. Effect of exopolysaccharides on phage-host interactions in Lactococcus lactis. Appl Environ Microbiol 2002;68:4364-9.

18. Millen AM, Romero DA, Horvath P, Magill D, Simdon L. Host-encoded, cell surface-associated exopolysaccharide required for adsorption and infection by lactococcal P335 phage subtypes. Front Microbiol 2022;13:971166.

19. Millen AM, Horvath P, Boyaval P, Romero DA. Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis. PLoS One 2012;7:e51663.

20. Anderson DG, Mckay LL. Genetic and physical characterization of recombinant plasmids associated with cell aggregation and high-frequency conjugal transfer in Streptococcus lactis ML3. J Bacteriol 1984;158:954-62.

21. Duwat P, Cochu A, Ehrlich SD, Gruss A. Characterization of Lactococcus lactis UV-sensitive mutants obtained by ISS1 transposition. J Bacteriol 1997;179:4473-9.

22. Bebeacua C, Tremblay D, Farenc C, et al. Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2. J Virol 2013;87:12302-12.

23. Coq AM, Cesselin B, Commissaire J, Anba J. Sequence analysis of the lactococcal bacteriophage bIL170: insights into structural proteins and HNH endonucleases in dairy phages. Microbiology 2002;148:985-1001.

24. Mahony J, Deveau H, Mc Grath S, et al. Sequence and comparative genomic analysis of lactococcal bacteriophages jj50, 712 and P008: evolutionary insights into the 936 phage species. FEMS Microbiol Lett 2006;261:253-61.

25. Maguin E, Prévost H, Ehrlich SD, Gruss A. Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol 1996;178:931-5.

26. Terzaghi BE, Sandine WE. Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 1975;29:807-13.

27. Labrie S, Moineau S. Multiplex PCR for detection and identification of lactococcal bacteriophages. Appl Environ Microbiol 2000;66:987-94.

28. Sanders ME, Klaenhammer TR. Restriction and modification in group N streptococci: effect of heat on development of modified lytic bacteriophage. Appl Environ Microbiol 1980;40:500-6.

29. Aziz RK, Bartels D, Best AA, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75.

30. Overbeek R, Olson R, Pusch GD, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42:D206-14.

31. Brettin T, Davis JJ, Disz T, et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015;5:8365.

32. Zimmermann L, Stephens A, Nam SZ, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 2018;430:2237-43.

33. Gabler F, Nam SZ, Till S, et al. Protein sequence analysis using the MPI bioinformatics toolkit. Curr Protoc Bioinformatics 2020;72:e108.

34. Dower WJ, Miller JF, Ragsdale CW. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 1988;16:6127-45.

35. Holo H, Nes IF. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 1989;55:3119-23.

36. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596:583-9.

37. Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 2005;33:2302-9.

38. DeLano WL. Pymol: an open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr 2002;40:82-92. Available from: https://legacy.ccp4.ac.uk/newsletters/newsletter40/11_pymol.pdf. [Last accessed on 3 Jul 2023]

39. Mc Grath S, Neve H, Seegers JF, et al. Anatomy of a lactococcal phage tail. J Bacteriol 2006;188:3972-82.

40. Legrand P, Collins B, Blangy S, et al. The atomic structure of the phage Tuc2009 baseplate tripod suggests that host recognition involves two different carbohydrate binding modules. mBio 2016;7:e01781-15.

41. Kranenburg R, Vos HR, van Swam II, Kleerebezem M, de Vos WM. Functional analysis of glycosyltransferase genes from Lactococcus lactis and other gram-positive cocci: complementation, expression, and diversity. J Bacteriol 1999;181:6347-53.

42. Hayes S, Mahony J, Vincentelli R, et al. Ubiquitous carbohydrate binding modules decorate 936 lactococcal siphophage virions. Viruses 2019;11:631.

43. McCabe O, Spinelli S, Farenc C, et al. The targeted recognition of Lactococcus lactis phages to their polysaccharide receptors. Mol Microbiol 2015;96:875-86.

44. Murphy J, Bottacini F, Mahony J, et al. Comparative genomics and functional analysis of the 936 group of lactococcal siphoviridae phages. Sci Rep 2016;6:21345.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/