REFERENCES

1. Stewart CJ, Ajami NJ, O’Brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018;562:583-8.

2. Sakanaka M, Hansen ME, Gotoh A, et al. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Adv 2019;5:eaaw7696.

3. Asakuma S, Hatakeyama E, Urashima T, et al. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 2011;286:34583-92.

4. Sakanaka M, Gotoh A, Yoshida K, et al. Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides: prevalence of the gene set and its correlation with bifidobacteria-rich microbiota formation. Nutrients 2019;12:71.

5. Yamada C, Gotoh A, Sakanaka M, et al. Molecular insight into evolution of symbiosis between breast-fed infants and a member of the human gut microbiome Bifidobacterium longum. Cell Chem Biol 2017;24:515-524.e5.

6. Ojima MN, Jiang L, Arzamasov AA, et al. Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides. ISME J 2022;16:2265-79.

7. Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr 2000;71:1589-96.

8. Urashima T, Asakuma S, Leo F, Fukuda K, Messer M, Oftedal OT. The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv Nutr 2012;3:473S-82S.

9. Katayama T. Host-derived glycans serve as selected nutrients for the gut microbe: human milk oligosaccharides and bifidobacteria. Biosci Biotechnol Biochem 2016;80:621-32.

10. Garrido D, Kim JH, German JB, Raybould HE, Mills DA. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS One 2011;6:e17315.

11. Yoshida E, Sakurama H, Kiyohara M, et al. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology 2022;22:361-8.

12. Viborg AH, Katayama T, Abou Hachem M, et al. Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697. Glycobiology 2014;24:208-16.

13. James K, Motherway MO, Bottacini F, van Sinderen D. Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways. Sci Rep 2016;6:38560.

14. O’ Connell Motherway M, Zomer A, Leahy SC, et al. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci U S A 2011;108:11217-22.

15. Wada J, Ando T, Kiyohara M, et al. Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol 2008;74:3996-4004.

16. Hattie M, Ito T, Debowski AW, et al. Gaining insight into the catalysis by GH20 lacto-N-biosidase using small molecule inhibitors and structural analysis. Chem Commun 2015;51:15008-11.

17. Sakurama H, Kiyohara M, Wada J, et al. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression. J Biol Chem 2013;288:25194-206.

18. Gotoh A, Katoh T, Sugiyama Y, et al. Novel substrate specificities of two lacto-N-biosidases towards β-linked galacto-N-biose-containing oligosaccharides of globo H, Gb5, and GA1. Carbohydr Res 2015;408:18-24.

19. Suzuki R, Wada J, Katayama T, et al. Structural and thermodynamic analyses of solute-binding Protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-N-biose I. J Biol Chem 2008;283:13165-73.

20. Kitaoka M. Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides. Adv Nutr 2012;3:422S-9S.

21. Sasaki Y, Komeno M, Ishiwata A, et al. Mechanism of cooperative degradation of gum arabic arabinogalactan protein by Bifidobacterium longum surface enzymes. Appl Environ Microbiol 2022;88:e0218721.

22. Sasaki Y, Yanagita M, Hashiguchi M, et al. Assimilation of arabinogalactan side chains with novel 3-O-β-L-arabinopyranosyl-α-L-arabinofuranosidase in Bifidobacterium pseudocatenulatum. Microbiome Res Rep 2023;2:12.

23. Hidaka M, Fushinobu S, Ohtsu N, et al. Trimeric crystal structure of the glycoside hydrolase family 42 β-galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose. J Mol Biol 2002;322:79-91.

24. Godoy AS, Camilo CM, Kadowaki MA, et al. Crystal structure of β1→6-galactosidase from Bifidobacterium bifidum S17: trimeric architecture, molecular determinants of the enzymatic activity and its inhibition by α-galactose. FEBS J 2016;283:4097-112.

25. Viborg AH, Fredslund F, Katayama T, et al. A β1-6/β1-3 galactosidase from Bifidobacterium animalis subsp. lactis Bl-04 gives insight into sub-specificities of β-galactoside catabolism within Bifidobacterium. Mol Microbiol 2014;94:1024-40.

26. Maksimainen M, Paavilainen S, Hakulinen N, Rouvinen J. Structural analysis, enzymatic characterization, and catalytic mechanisms of β-galactosidase from Bacillus circulans sp. alkalophilus. FEBS J 2012;279:1788-98.

27. Solomon HV, Tabachnikov O, Feinberg H, et al. Crystallization and preliminary crystallographic analysis of GanB, a GH42 intracellular β-galactosidase from Geobacillus stearothermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013;69:1114-9.

28. Fan Y, Hua X, Zhang Y, et al. Cloning, expression and structural stability of a cold-adapted β-galactosidase from Rahnella sp. R3. Protein Expr Purif 2015;115:158-64.

29. Karan R, Mathew S, Muhammad R, et al. Understanding high-salt and cold adaptation of a polyextremophilic enzyme. Microorganisms 2020;8:1594.

30. Mangiagalli M, Lapi M, Maione S, et al. The co-existence of cold activity and thermal stability in an Antarctic GH42 β-galactosidase relies on its hexameric quaternary arrangement. FEBS J 2021;288:546-65.

31. Viborg AH, Katayama T, Arakawa T, et al. Discovery of α-l-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42. J Biol Chem 2017;292:21092-101.

32. Ojima MN, Asao Y, Nakajima A, et al. Diversification of a fucosyllactose transporter within the genus Bifidobacterium. Appl Environ Microbiol 2022;88:e0143721.

33. Nishimoto M, Kitaoka M. Practical preparation of lacto-N-biose I, a candidate for the bifidus factor in human milk. Biosci Biotechnol Biochem 2007;71:2101-4.

34. Nihira T, Nakajima M, Inoue K, Nishimoto M, Kitaoka M. Colorimetric quantification of alpha-D-galactose 1-phosphate. Anal Biochem 2007;371:259-61.

35. Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr 2010;66:125-32.

36. Evans PR, Murshudov GN. How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 2013;69:1204-14.

37. Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr 2010;66:22-5.

38. Casañal A, Lohkamp B, Emsley P. Current developments in Coot for macromolecular model building of Electron Cryo-microscopy and Crystallographic Data. Protein Sci 2020;29:1069-78.

39. Murshudov GN, Skubák P, Lebedev AA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 2011;67:355-67.

40. Holm L, Laakso LM. Dali server update. Nucleic Acids Res 2016;44:W351-5.

41. Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007;372:774-97.

42. Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 1997;7:637-44.

43. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547-9.

44. Larkin MA, Blackshields G, Brown NP, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947-8.

45. Holm L. DALI and the persistence of protein shape. Protein Sci 2020;29:128-40.

46. Di Lauro B, Strazzulli A, Perugino G, et al. Isolation and characterization of a new family 42 β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: identification of the active site residues. Biochim Biophys Acta 2008;1784:292-301.

47. Shaikh FA, Müllegger J, He S, Withers SG. Identification of the catalytic nucleophile in Family 42 β-galactosidases by intermediate trapping and peptide mapping: YesZ from Bacillus subtilis. FEBS Lett 2007;581:2441-6.

48. Cremer D, Pople JA. General definition of ring puckering coordinates. J Am Chem Soc 1975;97:1354-8.

49. Wheatley RW, Huber RE. An allolactose trapped at the lacZ β-galactosidase active site with its galactosyl moiety in a (4)H3 conformation provides insights into the formation, conformation, and stabilization of the transition state. Biochem Cell Biol 2015;93:531-40.

50. Davies GJ, Ducros VM, Varrot A, Zechel DL. Mapping the conformational itinerary of β-glycosidases by X-ray crystallography. Biochem Soc Trans 2003;31:523-7.

51. Hinz SW, van den Brock LA, Beldman G, Vincken JP, Voragen AG. β-galactosidase from Bifidobacterium adolescentis DSM20083 prefers β(1,4)-galactosides over lactose. Appl Microbiol Biotechnol 2004;66:276-84.

52. Goulas T, Goulas A, Tzortzis G, Gibson GR. Comparative analysis of four β-galactosidases from Bifidobacterium bifidum NCIMB41171: purification and biochemical characterisation. Appl Microbiol Biotechnol 2009;82:1079-88.

53. Arzamasov AA, Nakajima A, Sakanaka M, et al. Human milk oligosaccharide utilization in intestinal bifidobacteria is governed by global transcriptional regulator NagR. mSystems 2022;7:e0034322.

54. Sonnenburg JL, Xu J, Leip DD, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005;307:1955-9.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/