REFERENCES

1. Kirk EP, Klein S. Pathogenesis and pathophysiology of the cardiometabolic syndrome. J Clin Hypertens (Greenwich) 2009;11:761-5.

2. Mozaffarian D, Benjamin EJ, Go AS, et al. Writing Group Members. Heart disease and stroke statistics-2016 update: a report from the American heart association. Circulation 2016;133:e38-360.

3. Rienks J, Barbaresko J, Nöthlings U. Association of polyphenol biomarkers with cardiovascular disease and mortality risk: a systematic review and meta-analysis of observational studies. Nutrients 2017;9:415.

4. Casas R, Castro-Barquero S, Estruch R, Sacanella E. Nutrition and cardiovascular health. Int J Mol Sci 2018;19:3988.

5. Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014;7:17-44.

6. Liu RH. Health-promoting components of fruits and vegetables in the diet. Adv Nutr 2013;4:384S-92S.

7. Bondonno NP, Dalgaard F, Kyrø C, et al. Flavonoid intake is associated with lower mortality in the Danish diet cancer and health cohort. Nat Commun 2019;10:3651.

8. Rienks J, Barbaresko J, Oluwagbemigun K, Schmid M, Nöthlings U. Polyphenol exposure and risk of type 2 diabetes: dose-response meta-analyses and systematic review of prospective cohort studies. Am J Clin Nutr 2018;108:49-61.

9. Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013;18:1818-92.

10. Tresserra-Rimbau A, Rimm EB, Medina-Remón A, et al. PREDIMED Study Investigators. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr Metab Cardiovasc Dis 2014;24:639-47.

11. Rodriguez-Mateos A, Vauzour D, Krueger CG, et al. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 2014;88:1803-53.

12. Curtis PJ, van der Velpen V, Berends L, et al. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized controlled trial. Am J Clin Nutr 2019;109:1535-45.

13. Martínez-López S, Sarriá B, Mateos R, Bravo-Clemente L. Moderate consumption of a soluble green/roasted coffee rich in caffeoylquinic acids reduces cardiovascular risk markers: results from a randomized, cross-over, controlled trial in healthy and hypercholesterolemic subjects. Eur J Nutr 2019;58:865-78.

14. Cassidy A, Minihane AM. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 2017;105:10-22.

15. Gibney ER, Milenkovic D, Combet E, et al. Factors influencing the cardiometabolic response to (poly)phenols and phytosterols: a review of the COST action POSITIVe activities. Eur J Nutr 2019;58:37-47.

16. Morand C, De Roos B, Garcia-Conesa MT, et al. Why interindividual variation in response to consumption of plant food bioactives matters for future personalised nutrition. Proc Nutr Soc 2020;79:225-35.

17. Bohn T. Dietary factors affecting polyphenol bioavailability. Nutr Rev 2014;72:429-52.

18. Aravind S, Wichienchot S, Tsao R, Ramakrishnan S, Chakkaravarthi S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res Int 2021;142:110189.

19. Espín JC, González-Sarrías A, Tomás-Barberán FA. The gut microbiota: a key factor in the therapeutic effects of (poly)phenols. Biochem Pharmacol 2017;139:82-93.

20. Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 2013;24:1415-22.

21. Lu F, Li Y, Wang X, Hu X, Liao X, Zhang Y. Early-life polyphenol intake promotes Akkermansia growth and increase of host goblet cells in association with the potential synergistic effect of Lactobacillus. Food Res Int 2021;149:110648.

22. Vallejo F, Larrosa M, Escudero E, et al. Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. J Agric Food Chem 2010;58:6516-24.

23. Bolca S, Possemiers S, Maervoet V, et al. Microbial and dietary factors associated with the 8-prenylnaringenin producer phenotype: a dietary intervention trial with fifty healthy post-menopausal Caucasian women. Br J Nutr 2007;98:950-9.

24. Mena P, Ludwig IA, Tomatis VB, et al. Inter-individual variability in the production of flavan-3-ol colonic metabolites: preliminary elucidation of urinary metabotypes. Eur J Nutr 2019;58:1529-43.

25. Rowland IR, Wiseman H, Sanders TA, Adlercreutz H, Bowey EA. Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer 2000;36:27-32.

26. González-sarrías A, Combet E, Pinto P, et al. A systematic review and meta-analysis of the effects of flavanol-containing tea, cocoa and apple products on body composition and blood lipids: exploring the factors responsible for variability in their efficacy. Nutrients 2017;9:746.

27. Setchell KD, Clerici C. Equol: pharmacokinetics and biological actions. J Nutr 2010;140:1363S-8S.

28. Turrini E, Maffei F, Milelli A, Calcabrini C, Fimognari C. Overview of the anticancer profile of avenanthramides from oat. Int J Mol Sci 2019;20:4536.

29. Mena P, Favari C, Acharjee A, et al. Metabotypes of flavan-3-ol colonic metabolites after cranberry intake: elucidation and statistical approaches. Eur J Nutr 2022;61:1299-317.

30. Everett JR, Holmes E, Veselkov KA, Lindon JC, Nicholson JK. A unified conceptual framework for metabolic phenotyping in diagnosis and prognosis. Trends Pharmacol Sci 2019;40:763-73.

31. Stevens Y, Rymenant EV, Grootaert C, et al. The intestinal fate of citrus flavanones and their effects on gastrointestinal health. Nutrients 2019;11:1464.

32. Tomás-Barberán FA, González-Sarrías A, García-Villalba R, et al. Urolithins, the rescue of “old” metabolites to understand a “new” concept: metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res 2017;61:1500901.

33. García-Mantrana I, Calatayud M, Romo-Vaquero M, Espín JC, Selma MV, Collado MC. Urolithin metabotypes can determine the modulation of gut microbiota in healthy individuals by tracking walnuts consumption over three days. Nutrients 2019;11:2483.

34. Iglesias-Aguirre CE, Cortés-Martín A, Ávila-Gálvez MÁ, et al. Main drivers of (poly)phenol effects on human health: metabolite production and/or gut microbiota-associated metabotypes? Food Funct 2021;12:10324-55.

35. Cortés-Martín A, Selma MV, Tomás-Barberán FA, González-Sarrías A, Espín JC. Where to look into the puzzle of polyphenols and health? Mol Nutr Food Res 2020;64:e1900952.

36. Liu C, Vervoort J, Beekmann K, et al. Interindividual differences in human intestinal microbial conversion of (−)-epicatechin to bioactive phenolic compounds. J Agric Food Chem ;2020:14168-81.

37. Kutschera M, Engst W, Blaut M, Braune A, Isolation of catechin-converting human intestinal bacteria. J Appl Microbiol 2011;111:165-75.

38. Takagaki A, Nanjo F. Catabolism of (+)-catechin and (−)-epicatechin by rat intestinal microbiota. J Agric Food Chem 2013;61:4927-35.

39. Sánchez-Patán F, Tabasco R, Monagas M, et al. Capability of lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts. J Agric Food Chem 2012;60:7142-51.

40. Senizza A, Rocchetti G, Mosele JI, et al. Lignans and gut microbiota: an interplay revealing potential health implications. Molecules 2020;25:5709.

41. Védrine N, Mathey J, Morand C, et al. One-month exposure to soy isoflavones did not induce the ability to produce equol in postmenopausal women. Eur J Clin Nutr 2006;60:1039-45.

42. Lu LJ, Lin SN, Grady JJ, Nagamani M, Anderson KE. Altered kinetics and extent of urinary daidzein and genistein excretion in women during chronic soya exposure. Nutr Cancer 1996;26:289-302.

43. González-Sarrías A, García-Villalba R, Romo-Vaquero M, et al. Clustering according to urolithin metabotype explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate: A randomized clinical trial. Mol Nutr Food Res 2017;61:1600830.

44. Frankenfeld CL. Cardiometabolic risk and gut microbial phytoestrogen metabolite phenotypes. Mol Nutr Food Resp 2017:61.

45. Hazim S, Curtis PJ, Schär MY, et al. Acute benefits of the microbial-derived isoflavone metabolite equol on arterial stiffness in men prospectively recruited according to equol producer phenotype: a double-blind randomized controlled trial. Am J Clin Nutr 2016;103:694-702.

46. Usui T, Tochiya M, Sasaki Y, et al. Effects of natural S-equol supplements on overweight or obesity and metabolic syndrome in the Japanese, based on sex and equol status. Clin Endocrinol (Oxf) 2013;78:365-72.

47. Hillesheim E, Brennan L. Metabotyping and its role in nutrition research. Nutr Res Rev 2020;33:33-42.

48. Ashley EA. Towards precision medicine. Nat Rev Genet 2016;17:507-22.

Microbiome Research Reports
ISSN 2771-5965 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/