REFERENCES
1. Park, S. E.; Shrout, T. Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE. Trans. Ultrason. Ferroelect. Freq. Contr. 1997, 44, 1140-7.
2. Rehrig, P. W.; Hackenberger, W. S.; Jiang, X.; Shrout, T. R.; Zhang, S.; Speyer, R. Status of piezoelectric single crystal growth for medical transducer applications. In 2003 IEEE Symposium on Ultrasonics, Proceeding of 2003 IEEE Ultrasonics Symposium, Honolulu, HI, USA, October 5-8, 2003; Yuhas, D. E., Susan C. Schneider, S. C., Eds; IEEE: Piscataway, New Jersey, USA, 2003; Vol. 1, pp 766-9.
3. Zhang, S.; Li, F. High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J. Appl. Phys. 2012, 111, 031301.
4. Zhang, S.; Li, F.; Yu, F.; et al. Recent Developments in Piezoelectric Crystals. J. Korean. Ceram. Soc. 2018, 55, 419-39.
5. Uchino, K. Electrostrictive and piezoelectric effects in relaxor ferroelectrics: historical background. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 2022, 69, 3013-36.
6. Yamamoto, N.; Yamashita, Y.; Hosono, Y.; Itsumi, K.; Higuchi, K. Ultrasonic probe, piezoelectric transducer, method of manufacturing ultrasonic probe, and method of manufacturing piezoelectric transducer. US20140062261A1, 2014.
7. Yamashita, Y.; Yamamoto, N.; Hosono, Y.; Itsumi, K. Piezoelectric transducer, ultrasonic probe, and method of manufacturing piezoelectric transducer. US20150372219A1, 2015.
8. Xu, J.; Deng, H.; Zeng, Z.; et al. Piezoelectric performance enhancement of Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 crystals by alternating current polarization for ultrasonic transducer. Appl. Phys. Lett. 2018, 112, 182901.
9. Chang, W.; Chung, C.; Luo, C.; et al. Dielectric and piezoelectric properties of 0.7 Pb(Mg1/3Nb2/3)O3 -0.3 PbTiO3 single crystal poled using alternating current. Mater. Res. Lett. 2018, 6, 537-44.
10. Wan, H.; Luo, C.; Chang, W.; Yamashita, Y.; Jiang, X. Effect of poling temperature on piezoelectric and dielectric properties of 0.7Pb(Mg1/3Nb-)O3-0.3PbTiO3 single crystals under alternating current poling. Appl. Phys. Lett. 2019, 114, 172901.
11. He, C.; Karaki, T.; Yang, X.; Yamashita, Y.; Sun, Y.; Long, X. Dielectric and piezoelectric properties of
12. Sun, Y.; Karaki, T.; Fujii, T.; Yamashita, Y. Alternate current poling and direct current poling for Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Jpn. J. Appl. Phys. 2019, 58, SLLC06.
13. Luo, C.; Wan, H.; Chang, W.; et al. Effect of low-frequency alternating current poling on 5-mm-thick 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals. Appl. Phys. Lett. 2019, 115, 192904.
14. Yang, S.; Wang, M.; Wang, L.; et al. Achieving both high electromechanical properties and temperature stability in textured PMN-PT ceramics. J. Am. Ceram. Soc. 2022, 105, 3322-30.
15. Qiu, C.; Wang, B.; Zhang, N.; et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 2020, 577, 350-4.
16. Xiong, J.; Wang, Z.; Yang, X.; Long, X.; He, C. Optimizing the piezoelectric and dielectric properties of Pb(In1/2Nb1/2)O3-PbTiO3 ferroelectric crystals via alternating current poling waveform. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 2021, 68, 2775-80.
17. Deng, C.; Ye, L.; He, C.; et al. Reporting excellent transverse piezoelectric and electro-optic effects in transparent rhombohedral PMN-PT single crystal by engineered domains. Adv. Mater. 2021, 33, e2103013.
18. Kim, H. P.; Wan, H.; Lu, X.; Yamashita, Y.; Jiang, X. Scaling effects in the alternating-current poling of thin PIN-PMN-PT single crystals. Appl. Phys. Lett. 2022, 120, 142901.
19. Sun, Y.; Ota, Y.; Fujii, T.; et al. Enhanced properties of 3-MHz sliver-mode vibrators for cardiac probes with alternating current poling for Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 2022, 69, 3087-94.
20. Kim, H. P.; Wan, H.; Luo, C.; et al. A review on alternating current poling for perovskite relaxor-PbTiO3 single crystals. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 2022, 69, 3037-47.
21. Yamashita, Y.; Karaki, T.; Lee, H. Y.; Wan, H.; Kim, H. P.; Jiang, X. A review of lead perovskite piezoelectric single crystals and their medical transducers application. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 2022, 69, 3048-56.
22. Xiang, Y.; Sun, Y.; Yamashita, Y.; Karaki, T.; Maiwa, H. Macro- and microstructure of lead perovskite ternary piezoelectric single crystals after direct current and alternating current poling. J. Ceram. Soc. Japan. 2023, 131, 263-9.
23. Xiang, Y.; Sun, Y.; Yamashita, Y.; Karaki, T.; Maiwa, H. Microstructure observation of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals by scanning electron microscopy. Jpn. J. Appl. Phys. 2023, 62, SM1029.
24. Tian, G.; Liu, F.; Du, J.; et al. Simultaneous enhancement of piezoelectricity and mechanical quality factor in relaxor-ferroelectric crystals via defect engineering. Appl. Phys. Lett. 2023, 122, 102901.
25. Maiwa, H.; Yamagata, Y.; Xiang, Y.; Sun, H.; Lee, H.; Yamashita, Y. Self-poling and DC poling of Mn doped Pb(Mg1/3Nb2/3)O3-Pb(ZrTi)O3 single crystals grown by a solid state crystal growth process. Jpn. J. Appl. Phys. 2024, 63, 04SP50.
26. Wu, H.; Han, S.; Liu, J.; et al. Enhanced high-power behaviors of Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric crystals through combining direct and alternating current polarization. J. Alloys. Compd. 2024, 989, 174370.
27. Kumar, A.; Kim, W.; Sriboriboon, P.; Lee, H.; Kim, Y.; Ryu, J. AC poling-induced giant piezoelectricity and high mechanical quality factor in [001] PMN-PZT hard single crystals. Sensors. Actuat. A:. Phys. 2024, 372, 115342.
28. Wang, S.; Liu, Z.; Han, L.; et al. Mesophase induced by alternating-current poling in relaxor ferroelectric single crystals. Acta. Materialia. 2024, 268, 119782.
29. Liang, M.; Xiong, R.; Chen, S.; et al. Thermal cycle stability and microstructure of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. J. Appl. Phys. 2024, 135, 164104.
30. Li, F.; Wang, B.; Chen, L. Phase-field-guided design of record-high piezoelectricity and discovery of simultaneous high light transparency and high piezoelectricity in relaxor ferroelectrics. MRS. Bulletin. 2024, 49, 626-35.
31. Kim, H. P.; Zhang, M. H.; Wang, B.; Wu, H.; Moon, S.; Xu, Z.; et al. Electrical de-poling and re-poling of relaxor-PbTiO3 piezoelectric single crystals without heat treatment. Nature commun 2024. p. 6420.
32. Maiwa, H.; Yamagata, Y.; Xiang, Y.; Lee, H.; Yamashita, Y. AC poling of high Qm and low acoustic impedance Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 single crystals produced by a solid-state crystal growth. Jpn. J. Appl. Phys. 2024, 63, 10SP01.
33. Qiu, C.; Liu, J.; Li, F.; Xu, Z. Thickness dependence of dielectric and piezoelectric properties for alternating current electric-field-poled relaxor-PbTiO3 crystals. J. Appl. Phys. 2019, 125, 014102.
34. Zhang, Z.; Xu, J.; Yang, L.; et al. The performance enhancement and temperature dependence of piezoelectric properties for
35. Kim, S.; Khanal, G. P.; Nam, H.; Fujii, I.; Ueno, S.; Wada, S. Effects of AC- and DC-bias field poling on piezoelectric properties of Bi-based ceramics. J. Ceram. Soc. Japan. 2019, 127, 353-6.
36. Zhou, Y.; Li, Q.; Zhuo, F.; et al. Domain switching and polarization fatigue in rhombohedral PIN-PMN-PT and Mn-doped
37. Lee, G.; Kim, H.; Lee, S.; Lee, H.; Jo, W. Depolarization mechanism of alternating-current-poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals measured using in-situ thermally stimulated depolarization current. KSS. 2020, 29, 59-62.
38. Ma, M.; Xia, S.; Song, K.; Guo, H.; Fan, S.; Li, Z. Enhanced dielectric and piezoelectric properties in the [001]-poled
39. Guo, L.; Su, B.; Wang, C.; et al. Orientation dependence of dielectric and piezoelectric properties of tetragonal relaxor ferroelectric single crystals by alternate current poling. J. Appl. Phys. 2020, 127, 184104.
40. Jiang, Z.; Ye, Z. Application study of Mn-doped PIN-PMN-PT relaxor ferroelectric crystal grown by vertical gradient Freeze method. Ferroelectrics 2020, 557, 9-17.
41. Xu, J.; Zhang, Z.; Liu, S.; et al. Optimizing the piezoelectric vibration of Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 single crystal by alternating current polarization for ultrasonic transducer. Appl. Phys. Lett. 2020, 116, 202903.
42. Liu, J.; Qiu, C.; Qiao, L.; et al. Impact of alternating current electric field poling on piezoelectric and dielectric properties of
43. Ma, J.; Zhu, K.; Huo, D.; Qi, X.; Sun, E.; Zhang, R. Performance enhancement of the piezoelectric ceramics by alternating current polarizing. Appl. Phys. Lett. 2021, 118, 022901.
44. Ma, M.; Xia, S.; Song, K.; Guo, H.; Xu, Z.; Li, Z. Temperature dependence of the transverse piezoelectric properties in the [001]-poled 0.25Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystal with alternating current treatment. J. Appl. Phys. 2021, 129, 114102.
45. Hong, C.; Wang, Z.; Su, B.; et al. Enhanced piezoelectric and dielectric properties of Pb(Yb1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals by combining alternating and direct current poling. J. Appl. Phys. 2021, 129, 124101.
46. Xiong, J.; Wang, Z.; Yang, X.; Su, R.; Long, X.; He, C. Effects of alternating current poling on the dielectric and piezoelectric properties of Pb(In0.5Nb0.5)O3-PbTiO3 crystals with a high Curie temperature. RSC. Adv. 2021, 11, 12826-32.
47. Qiu, C.; Xu, Z.; An, Z.; et al. In-situ domain structure characterization of Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals under alternating current electric field poling. Acta. Materialia. 2021, 210, 116853.
48. Ma, J.; Zhu, K.; Huo, D.; et al. Performance enhancement of 1-3 piezoelectric composite materials by alternating current polarising. Ceram. Int. 2021, 47, 18405-10.
49. Liao, F.; Zhao, Y.; Chen, Z.; Zheng, Y.; Chen, H. Bridgman growth and photoelectronic property of relaxor-based ferroelectric single crystal Pb(Sm1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3. Crystals 2021, 11, 402.
50. Ushakov, A. D.; Hu, Q.; Liu, X.; Xu, Z.; Wei, X.; Shur, V. Y. Domain structure evolution during alternating current poling and its influence on the piezoelectric properties in [001]-cut rhombohedral PIN-PMN-PT single crystals. Appl. Phys. Lett. 2021, 118, 232901.
51. Long, W.; Fan, X.; Fang, P.; Li, X.; Xi, Z. Optical Properties and Band Gap of Ternary PSN-PMN-PT Single Crystals. Crystals 2021, 11, 955.
52. Deng, T.; Fang, B.; Di, W.; et al. Electrical performance and ferroelectric phase transition characteristic in different oriented
53. Xiong, J.; Wang, Z.; Yang, X.; Su, R.; Long, X.; He, C. Impact of thickness and poling condition on dielectric and piezoelectric properties of Pb(In0.5Nb0.5)O3-PbTiO3 ferroelectric crystals. Physica. Status. Solidi. (b). 2022, 259, 2100287.
54. Chen, Z.; Deng, T.; Chen, R.; et al. Bridgman growth and electrical properties of Nd-doped PMN-PT single crystal with ultrahigh piezoelectricity. CrystEngComm 2022, 24, 837-45.
55. Baasandorj, L.; Chen, Z. Recent developments on relaxor-PbTiO3 ferroelectric crystals. Crystals 2022, 12, 56.
56. Jing, Y.; Liu, F.; Qi, X.; et al. Property enhancement in relaxor-PbTiO3 single crystals by alternating current poling: evaluation of intrinsic and extrinsic contributions. Ceram. Int. 2022, 48, 11764-71.
57. Liu, M.; Tang, H.; Zhang, W.; et al. Complete sets of material constants of [001]-poled 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 single crystals using alternating current poling. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 2022, 69, 3081-6.
58. Ma, M.; Xia, S.; Gao, X.; et al. Enhanced energy harvesting performance of PIN-PMN-PT single crystal unimorph using alternating current poling. Appl. Phys. Lett. 2022, 120, 042902.
59. Kong, S.; Hong, C.; Zhang, W.; et al. Performance enhancement of soft-PZT5 piezoelectric ceramics using poling technique. J. Am. Ceram. Soc. 2022, 105, 4744-50.
60. Xiong, J.; Wang, Z.; Yang, X.; et al. Performance enhancement of Pb(In1/2Nb1/2)O3-PbTiO3 ferroelectric single crystals using pulse poling. Scripta. Materialia. 2022, 215, 114694.
61. Nozaki, T.; Martin, A.; Kobayashi, R.; Nakayama, T.; Kakimoto, K. Pulse-poling and characterization of (Na,K)NbO3 ceramics. Jpn. J. Appl. Phys. 2022, 61, SN1030.
62. Ma, J.; Huo, D.; Qi, X.; et al. Enhanced electromechanical properties in Pb(Mg1/3Nb2/3)O3-PbTiO3 based 1-3 piezoelectric composites using the alternating current poling method. Mater. Sci. Eng:. B. 2022, 284, 115890.
64. Kim, D. J.; Lee, M. H.; Choi, H. I.; Jung, Y.; Lee, S.; Song, T. K. Bipolar cycling effects in BiFeO3-BaTiO3 piezoelectric ceramics. Curr. Appl. Phys. 2022, 44, 6-11.
65. Zhu, K.; Ma, J.; Liu, Y.; et al. Increasing performances of 1-3 piezocomposite ultrasonic transducer by alternating current poling method. Micromachines. (Basel). 2022, 13, 1715.
66. Liu, Y.; Li, Q.; Qiao, L.; Xu, Z.; Li, F. Achieving giant piezoelectricity and high property uniformity simultaneously in a relaxor ferroelectric crystal through rare-earth element doping. Adv. Sci. (Weinh). 2022, 9, e2204631.
67. Yan, S.; Sun, Z.; Chen, X.; et al. Growth and electrical properties of Yb3+ A-site doped PMNT:Yb single crystal. J. Phys. Chem. Solids. 2023, 173, 111103.
68. Hu, Y.; Yang, X.; Zhang, W.; et al. Comparing the performance fluctuation of direct and alternating current poling Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals. J. Appl. Phys. 2023, 133, 164106.
69. Guan, Y.; Hang, H.; Lin, D.; Wang, X.; Tang, Y.; Luo, H. Enhancement of 10 MHz single element ultrasonic transducers based on alternating current polarized PIN-PMN-PT single crystals. Sensors. Actuat. A:. Phys. 2023, 354, 114275.
70. Jia, N.; Li, C.; Qiu, C.; et al. Alternating current polarization to enhance piezoelectric performance of single crystal composites. Appl. Phys. Lett. 2023, 122, 232904.
71. Tang, H.; Zhang, W.; Yang, X.; et al. Temperature dependence of complete sets of material constants of
72. Wan, H.; Luo, C.; Kim, H.; et al. The overpoling effect of alternating current poling on rhombohedral Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Appl. Phys. Lett. 2022, 120, 192901.
73. Luo, H.; Xu, G.; Xu, H.; Wang, P.; Yin, Z. Compositional homogeneity and electrical properties of lead magnesium niobate titanate single crystals grown by a modified bridgman technique. Jpn. J. Appl. Phys. 2000, 39, 5581.
74. Luo, J.; Zhang, S. Advances in the growth and characterization of relaxor-PT-based ferroelectric single crystals. Crystals 2014, 4, 306-30.
75. Sun, E.; Cao, W. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. Prog. Mater. Sci. 2014, 65, 124-210.
76. Wang, S.; Xi, Z.; Fang, P.; Li, X.; Long, W.; He, A. Element segregation and electrical properties of PMN-32PT grown using the bridgman method. Crystals 2019, 9, 98.
77. Guo, H.; Song, K.; Li, Z.; Fan, S.; Xu, Z. 5” diameter PIN-PMN-PT crystal growth by the Bridgman method. J. Adv. Dielect. 2020, 10, 2050001.
78. Echizenya, K.; Nakamura, K.; Mizuno, K. PMN-PT and PIN-PMN-PT single crystals grown by continuous-feeding Bridgman method. J. Cryst. Growth. 2020, 531, 125364.
79. Li, K.; Zheng, H.; Qi, X.; et al. Multi-type nanoscale domain switching dynamics in tetragonal PIN-PMN-PT single crystal under electrical bias. Ceram. Int. 2023, 49, 109-16.
80. Yamashita, Y. J.; Sun, H.; Xiang, Y.; et al. Enhanced electrical properties by AC poling of relaxor-Pb(Zr,Ti)O3 single crystals manufactured by the solid state crystal growth method. Jpn. J. Appl. Phys. 2023, 62, SM1009.
81. Kim, H.; Wan, H.; Lee, H.; Yamashita, Y.; Jo, W.; Jiang, X. Thermal stability studies of alternating current poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals grown by solid-state crystal growth. Mater. Res. Lett. 2023, 11, 383-90.
82. Kang, S. L.; Park, J.; Ko, S.; Lee, H.; Green, D. J. Solid-state conversion of single crystals: the principle and the state-of-the-art. J. Am. Ceram. Soc. 2015, 98, 347-60.
83. Milisavljevic, I.; Wu, Y. Current status of solid-state single crystal growth. BMC. Mat. 2020, 2, 8.
84. Lee, G. J.; Kim, H. P.; Lee, H. Y.; Jo, W. Effect of internal bias field on poling behavior in mn-doped Pb(Mg1/3Nb2/3)O3-29 mol%PbTiO3 single crystal. J. Korean. Inst. Electr. Electron. Mater. Eng. 2021, 34, 382-5.
85. Kim, H.; Lee, G.; Lee, J.; et al. Poling-free relaxor-PbTiO3 single crystals. Journal. of. Materiomics. 2025, 11, 100887.
86. Ceracomp. Available from: https://www.ceracomp.com/ [Last accessed on 17 Apr 2025].
87. Sato, Y.; Hirayama, T.; Ikuhara, Y. Evolution of nanodomains under DC electrical bias in Pb(Mg1/3Nb2/3)O3-PbTiO3: An In-situ transmission electron microscopy study. Appl. Phys. Lett. 2012, 100, 172902.
88. Sato, Y. Response of ferroelectric nanodomain to alternative-current electric fields in morphotropic-phase boundary Pb(Mg1/3Nb2/3)O3-PbTiO3. Appl. Phys. Lett. 2024, 125, 242906.
89. Zheng, L.; Lu, X.; Shang, H.; et al. Hysteretic phase transition sequence in 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystal driven by electric field and temperature. Phys. Rev. B. 2015, 91, 184105.
90. IEEE Standards Association. IEEE Standard for relaxor-based single crystals for transducer and actuator applications. IEEE Std 1859-2017; 2017:1-25.
91. Wada, S.; Yako, K.; Kakemoto, H.; Tsurumi, T.; Kiguchi, T. Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J. Appl. Phys. 2005, 98, 014109.
92. Wada, S.; Muraishi, T.; Yokoh, K.; Yako, K.; Kamemoto, H.; Tsurumi, T. Domain wall engineering in lead-free piezoelectric crystals. Ferroelectrics 2007, 355, 37-49.
93. Liu, G.; Jiang, W.; Zhu, J.; Cao, W. Electromechanical properties and anisotropy of single- and multi-domain
94. Shen, Z.; Li, J. Enhancement of piezoelectric constant d33 in BaTiO3 ceramics due to nano-domain structure. J. Ceram. Soc. Japan. 2010, 118, 940-3.
95. Song, K.; Ma, M.; Hu, Q.; et al. Enhanced piezoelectric properties and domain morphology under alternating current electric field poled in [001]-oriented PIN-PMN-PT single crystal. J. Appl. Phys. 2022, 132, 114103.