REFERENCES
1. Baino, F.; Novajra, G.; Vitale-Brovarone, C. Bioceramics and scaffolds: a winning combination for tissue engineering. Front. Bioeng. Biotechnol. 2015, 3, 202.
2. Arifvianto, B.; Zhou, J. Fabrication of metallic biomedical scaffolds with the space holder method: a review. Materials 2014, 7, 3588-622.
3. Boccaccini, A. R.; Ma, P. X.; Liverani, L. Tissue engineering using ceramics and polymers. 3th ed. Woodhead Publishing; 2021. p. 888. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=T48mEAAAQBAJ&oi=fnd&pg=PP1&dq=.+Boccaccini+AR,+Ma+PX,+Liverani+L.+Tissue+engineering+using+ceramics+and+polymers.+3th+ed.+Woodhead+Publishing%3B+2021.+p.+888.&ots=dFsHECuJGQ&sig=SJ5feosbK0lDHAPtYiXHwzW35cE#v=onepage&q&f=false. [Last accessed on 6 Mar 2025].
4. Suamte, L.; Tirkey, A.; Barman, J.; Jayasekhar, B. P. Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart. Mater. Manuf. 2023, 1, 100011.
5. Ahmadipour, M.; Mohammadi, H.; Pang, A. L.; et al. A review: silicate ceramic-polymer composite scaffold for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 180-95.
6. Thangavel, M.; Elsen, S. R. Review of physical, mechanical, and biological characteristics of 3D-printed bioceramic scaffolds for bone tissue engineering applications. ACS. Biomater. Sci. Eng. 2022, 8, 5060-93.
7. Nuss, K. M.; von, R. B. Biocompatibility issues with modern implants in bone-a review for clinical orthopedics. Open. Orthop. J. 2008, 2, 66-78.
8. Söhling, N.; Ondreka, M.; Kontradowitz, K.; Reichel, T.; Marzi, I.; Henrich, D. Early immune response in foreign body reaction is implant/material specific. Materials 2022, 15, 2195.
9. Kämmerling, L.; Fisher, L. E.; Antmen, E.; et al. Mitigating the foreign body response through ‘immune-instructive’ biomaterials. J. Immunol. Regen. Med. 2021, 12, 100040.
10. Zhang, Y.; Xu, J.; Ruan, Y. C.; et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat. Med. 2016, 22, 1160-9.
11. Shanmugavadivu, A.; Lekhavadhani, S.; Babu, S.; Suresh, N.; Selvamurugan, N. magnesium-incorporated biocomposite scaffolds: a novel frontier in bone tissue engineering. J. Magnes. Alloys. 2024, 12, 2231-48.
12. Hung, C. C.; Chaya, A.; Liu, K.; Verdelis, K.; Sfeir, C. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta. Biomater. 2019, 98, 246-55.
13. Ye, L.; Xu, J.; Mi, J.; et al. Biodegradable magnesium combined with distraction osteogenesis synergistically stimulates bone tissue regeneration via CGRP-FAK-VEGF signaling axis. Biomaterials 2021, 275, 120984.
14. Wang, Q.; Qin, H.; Deng, J.; et al. Research progress in calcitonin gene-related peptide and bone repair. Biomolecules 2023, 13, 838.
15. Zaidi, M.; Moonga, B. S.; Abe, E. Calcitonin and bone formation: a knockout full of surprises. J. Clin. Invest. 2002, 110, 1769-71.
16. Müller, E.; Schoberwalter, T.; Mader, K.; et al. The biological effects of magnesium-based implants on the skeleton and their clinical implications in orthopedic trauma surgery. Biomater. Res. 2024, 28, 0122.
17. Han, F.; Wang, J.; Ding, L.; et al. Tissue engineering and regenerative medicine: achievements, future, and sustainability in asia. Front. Bioeng. Biotechnol. 2020, 8, 83.
18. Miki, K.; Takeshita, N.; Yamashita, M.; Kitamura, M.; Murakami, S. Calcitonin gene-related peptide regulates periodontal tissue regeneration. Sci. Rep. 2024, 14, 1344.
19. Wimalawansa, S. J. Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr. Rev. 1996, 17, 533-85.
20. Wu, H.; Lin, X. Q.; Long, Y.; Wang, J. Calcitonin gene-related peptide is potential therapeutic target of osteoporosis. Heliyon 2022, 8, e12288.
21. Yeung, K. W. K.; Wong, K. H. M. Biodegradable metallic materials for orthopaedic implantations: a review. Technol. Health. Care. 2012, 20, 345-62.
22. Qin, Y.; Wen, P.; Guo, H.; et al. Additive manufacturing of biodegradable metals: current research status and future perspectives. Acta. Biomater. 2019, 98, 3-22.
23. Yazdimamaghani, M.; Razavi, M.; Vashaee, D.; Moharamzadeh, K.; Boccaccini, A. R.; Tayebi, L. Porous magnesium-based scaffolds for tissue engineering. Mater. Sci. Eng. C. 2017, 71, 1253-66.
24. Levy, G. K.; Goldman, J.; Aghion, E. The prospects of zinc as a structural material for biodegradable implants-a review paper. Metals 2017, 7, 402.
25. Amukarimi, S.; Mozafari, M. Biodegradable magnesium-based biomaterials: an overview of challenges and opportunities. MedComm 2021, 2, 123-44.
26. Shahzamanian, M.; Banerjee, R.; Dahotre, N. B.; Srinivasa, A. R.; Reddy, J. Analysis of stress shielding reduction in bone fracture fixation implant using functionally graded materials. Compos. Struct. 2023, 321, 117262.
27. Li, K.; Liang, L.; Du, P.; et al. Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application. J. Mater. Scie. Technol. 2022, 103, 73-83.
28. Velikokhatnyi, O. I.; Kumta, P. N. First principles study of the elastic properties of magnesium and iron based bio-resorbable alloys. Mater. Sci. Eng. B. 2018, 230, 20-3.
29. Cheng, J.; Liu, B.; Wu, Y.; Zheng, Y. Comparative in vitro study on pure metals (Fe, Mn, Mg, Zn and W) as biodegradable metals. J. Mater. Sci. Technol. 2013, 29, 619-27.
30. Witte, F. The history of biodegradable magnesium implants: a review. Acta. Biomater. 2010, 6, 1680-92.
31. Waizy, H.; Seitz, J.; Reifenrath, J.; et al. Biodegradable magnesium implants for orthopedic applications. J. Mater. Sci. 2013, 48, 39-50.
32. Meagher, P.; O’Cearbhaill, E. D.; Byrne, J. H.; Browne, D. J. Bulk metallic glasses for implantable medical devices and surgical tools. Adv. Mater. 2016, 28, 5755-62.
33. Sezer, N.; Evis, Z.; Koç, M. Additive manufacturing of biodegradable magnesium implants and scaffolds: review of the recent advances and research trends. J. Magnes. Alloys. 2021, 9, 392-415.
34. Staiger, M. P.; Pietak, A. M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006, 27, 1728-34.
36. Cheng, Y.; Ma, E. Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 2011, 56, 379-473.
37. Xie, G.; Wang, X. Metallic glasses for biomedical applications. In: Setsuhara Y, Kamiya T, Yamaura S, editors. Novel structured metallic and inorganic materials. Singapore: Springer; 2019. pp. 421-33.
38. Biały, M.; Hasiak, M.; Łaszcz, A. Review on biocompatibility and prospect biomedical applications of novel functional metallic glasses. J. Funct. Biomater. 2022, 13, 245.
39. Du, P.; Wu, Z.; Li, K.; Xiang, T.; Xie, G. Porous Ti-based bulk metallic glass orthopedic biomaterial with high strength and low Young’s modulus produced by one step SPS. J. Mater. Res. Technol. 2021, 13, 251-9.
40. Demetriou, M. D.; Wiest, A.; Hofmann, D. C.; et al. Amorphous metals for hard-tissue prosthesis. JOM. 2010, 62, 83-91.
41. Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta. Materialia. 2000, 48, 279-306.
43. Sharma, A.; Zadorozhnyy, V. Review of the recent development in metallic glass and its composites. Metals 2021, 11, 1933.
44. Onyeagba, C.; Valashani, M.; Wang, H.; Brown, C.; Yarlagadda, P.; Tesfamichael, T. Nanomechanical surface properties of co-sputtered thin film polymorphic metallic glasses based on Ti-Fe-Cu, Zr-Fe-Al, and Zr-W-Cu. Surf. Interfaces. 2023, 40, 103090.
45. Onyeagba, C.; Will, G.; Barclay, M.; Brown, C.; Wang, H.; Tesfamichael, T. Polymorphous nanostructured metallic glass coatings for corrosion protection of medical grade Ti substrate. Intermetallics 2024, 165, 108167.
46. Li, H. F.; Zheng, Y. F. Recent advances in bulk metallic glasses for biomedical applications. Acta. Biomater. 2016, 36, 1-20.
47. Li, Z.; Huang, Z.; Sun, F.; Li, X.; Ma, J. Forming of metallic glasses: mechanisms and processes. Mater. Today. Adv. 2020, 7, 100077.
48. Dambatta, M.; Izman, S.; Yahaya, B.; Lim, J.; Kurniawan, D. Mg-based bulk metallic glasses for biodegradable implant materials: a review on glass forming ability, mechanical properties, and biocompatibility. J. Non-Cryst. Solids. 2015, 426, 110-5.
49. Bejarano, J.; Boccaccini, A. R.; Covarrubias, C.; Palza, H. Effect of Cu- and Zn-doped bioactive glasses on the in vitro bioactivity, mechanical and degradation behavior of biodegradable PDLLA scaffolds. Materials 2020, 13, 2908.
50. Purnama, A.; Hermawan, H.; Couet, J.; Mantovani, D. Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation. Acta. Biomater. 2010, 6, 1800-7.
51. Williams, E.; Lavery, N. Laser processing of bulk metallic glass: a review. J. Mater. Process. Technol. 2017, 247, 73-91.
52. Wang, W.; Dong, C.; Shek, C. Bulk metallic glasses. Mater. Sci. Eng. R:. Reports. 2004, 44, 45-89.
53. Sohrabi, N.; Jhabvala, J.; Logé, R. E. Additive manufacturing of bulk metallic glasses-process, challenges and properties: a review. Metals 2021, 11, 1279.
54. Klement, W.; Willens, R. H.; Duwez, P. Non-crystalline structure in solidified gold-silicon alloys. Nature 1960, 187, 869-70.
56. Pan, C.; Wu, T.; Chen, M.; Chang, Y.; Lee, C.; Huang, J. Hot embossing of micro-lens array on bulk metallic glass. Sens. Actuators. A. Phys. 2008, 141, 422-31.
57. Kawamura, Y.; Shibata, T.; Inoue, A.; Masumoto, T. Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass. Acta. Mater. 1998, 46, 253-63.
58. Martinez, R.; Kumar, G.; Schroers, J. Hot rolling of bulk metallic glass in its supercooled liquid region. Scripta. Mater. 2008, 59, 187-90.
59. Wiest, A.; Harmon, J.; Demetriou, M.; Daleconner, R.; Johnson, W. Injection molding metallic glass. Scripta. Mater. 2009, 60, 160-3.
60. Schroers, J.; Hodges, T. M.; Kumar, G.; et al. Thermoplastic blow molding of metals. Materials. Today. 2011, 14, 14-9.
62. Li, X.; Li, G.; Ma, J.; Cao, Y.; Xu, Y.; Ming, W. Progress in the preparation, forming and machining of metallic glasses. J. Manuf. Processes. 2024, 117, 244-77.
63. Khan, M. M.; Nemati, A.; Rahman, Z. U.; Shah, U. H.; Asgar, H.; Haider, W. Recent advancements in bulk metallic glasses and their applications: a review. Crit. Rev. Solid. State. Mater. Sci. 2018, 43, 233-68.
65. Li, H. X.; Lu, Z. C.; Wang, S. L.; Wu, Y.; Lu, Z. P. Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications. Progress. Mater. Sci. 2019, 103, 235-18.
67. Jung, H. Y.; Choi, S. J.; Prashanth, K. G.; et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study. Mater. Des. 2015, 86, 703-8.
68. Zhang, C.; Ouyang, D.; Pauly, S.; Liu, L. 3D printing of bulk metallic glasses. Mater. Sci. Eng. R:. Reports. 2021, 145, 100625.
69. Kumar, G.; Desai, A.; Schroers, J. Bulk metallic glass: the smaller the better. Adv. Mater. 2011, 23, 461-76.
70. Zhang, C.; Li, X.; Liu, S.; Liu, H.; Yu, L.; Liu, L. 3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications. J. Alloys. Compds. 2019, 790, 963-73.
71. Ouyang, D.; Zhang, P.; Zhang, C.; Liu, L. Understanding of crystallization behaviors in laser 3D printing of bulk metallic glasses. Appl. Mater. Today. 2021, 23, 100988.
72. Xie, F.; Chen, Q.; Gao, J.; Li, Y. Laser 3D printing of Fe-based bulk metallic glass: microstructure evolution and crack propagation. J. Mater. Eng. Perform. 2019, 28, 3478-86.
73. Ouyang, D.; Li, N.; Xing, W.; Zhang, J.; Liu, L. 3D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting. Intermetallics 2017, 90, 128-34.
74. Hofmann, D. C. Bulk metallic glasses and their composites: a brief history of diverging fields. J. Mater. 2012, 1, 517904.
76. Pan, D.; Inoue, A.; Sakurai, T.; Chen, M. W. Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14769-72.
77. Hofmann, D. C.; Suh, J. Y.; Wiest, A.; et al. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 2008, 451, 1085-9.
78. Xu, J.; Ramamurty, U.; Ma, E. The fracture toughness of bulk metallic glasses. JOM. 2010, 62, 10-8.
79. He, Q.; Cheng, Y.; Ma, E.; Xu, J. Locating bulk metallic glasses with high fracture toughness: chemical effects and composition optimization. Acta. Mater. 2011, 59, 202-15.
80. Nekouie, V.; Abeygunawardane-arachchige, G.; Roy, A.; Silberschmidt, V. V. Bulk metallic glasses: mechanical properties and performance. In: Silberschmidt VV, Matveenko VP, editors. Mechanics of advanced materials. Cham: Springer International Publishing; 2015. pp. 101-34.
81. Hu, J.; Shao, J.; Huang, G.; Zhang, J.; Pan, S. In vitro and in vivo applications of magnesium-enriched biomaterials for vascularized osteogenesis in bone tissue engineering: a review of literature. J. Funct. Biomater. 2023, 14, 326.
82. Cheng, M. Q.; Wahafu, T.; Jiang, G. F.; et al. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci. Rep. 2016, 6, 24134.
83. Mordike, B.; Ebert, T. Magnesium: properties - applications - potential. Mater. Sci. Eng. A. 2001, 302, 37-45.
84. Tóth, L.; Yarema, S. Y. Formation of the science of fatigue of metals. Part 1. 1825-1870. Mater. Sci. 2006, 42, 673-80.
85. Zhang, X.; Chen, G.; Bauer, T. Mg-based bulk metallic glass composite with high bio-corrosion resistance and excellent mechanical properties. Intermetallics 2012, 29, 56-60.
87. Ductile magnesium, rolling, alloy design, rare earth, yttrium, Erbium, Y, casting, rolling, bending, sheet forming. 2024. Available from: https://www.dierk-raabe.com/magnesium-alloys/. [Last accessed on 6 Mar 2025].
88. Antoniac, I.; Manescu, P. V.; Paltanea, G.; et al. Additive manufactured magnesium-based scaffolds for tissue engineering. Materials 2022, 15, 8693.
89. Chu, Y. S.; Wong, P. C.; Jang, J. S.; Chen, C. H.; Wu, S. H. Combining Mg-Zn-Ca bulk metallic glass with a mesoporous silica nanocomposite for bone tissue engineering. Pharmaceutics 2022, 14, 1078.
90. Jin, C.; Liu, Z.; Yu, W.; Qin, C.; Yu, H.; Wang, Z. Biodegradable Mg-Zn-Ca-based metallic glasses. Materials 2022, 15, 2172.
91. Chen, J.; Dong, J.; Fu, H.; et al. In vitro and in vivo studies on the biodegradable behavior and bone response of Mg69Zn27Ca4 metal glass for treatment of bone defect. J. Mater. Sci. Technol. 2019, 35, 2254-62.
92. Zhao, Y.; Zhao, X. Structural relaxation and its influence on the elastic properties and notch toughness of Mg-Zn-Ca bulk metallic glass. J. Alloys. Compd. 2012, 515, 154-60.
93. Li, H.; Pang, S.; Liu, Y.; Sun, L.; Liaw, P. K.; Zhang, T. Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications. Mater. Des. 2015, 67, 9-19.
94. Gu, X.; Shiflet, G.; Guo, F.; Poon, S. Mg-Ca-Zn bulk metallic glasses with high strength and significant ductility. J. Mater. Res. 2005, 20, 1935-8.
95. Sun, Y.; Zhang, H.; Fu, H.; Wang, A.; Hu, Z. Mg-Cu-Ag-Er bulk metallic glasses with high glass forming ability and compressive strength. Mater. Sci. Eng. A. 2009, 502, 148-52.
96. Amiya, K.; Inoue, A. Preparation of bulk glassy Mg65Y10Cu15Ag5Pd5 alloy of 12 mm in diameter by water ouenching. Mater. Trans. 2001, 42, 543-5.
97. Li, Y.; Liu, H. Y.; Jones, H. Easy glass formation in magnesium-based Mg-Ni-Nd alloys. J. Mater. Sci. 1996, 31, 1857-63.
98. Park, E.; Kim, D. Formation of Mg-Cu-Ni-Ag-Zn-Y-Gd bulk glassy alloy by casting into cone-shaped copper mold in air atmosphere. J. Mater. Res. 2005, 20, 1465-9.
99. Yuan, G.; Qin, C.; Inoue, A. Mg-based bulk glassy alloys with high strength above 900 MPa and plastic strain. J. Mater. Res. 2005, 20, 394-400.
100. Gulenko, A.; Forto, C. L.; Gao, J.; et al. Atomic structure of Mg-based metallic glasses from molecular dynamics and neutron diffraction. Phys. Chem. Chem. Phys. 2017, 19, 8504-15.
101. Babilas, R.; Łukowiec, D.; Temleitner, L. Atomic structure of Mg-based metallic glass investigated with neutron diffraction, reverse Monte Carlo modeling and electron microscopy. Beilstein. J. Nanotechnol. 2017, 8, 1174-82.
102. Shi, L.; Xu, J. Mg based bulk metallic glasses: Glass transition temperature and elastic properties versus toughness. J. Non-Cryst. Solids. 2011, 357, 2926-33.
103. Wang, S.; Sun, M.; Song, Z.; Xu, J. Cast defects induced sample-size dependency on compressive strength and fracture toughness of Mg-Cu-Ag-Gd bulk metallic glass. Intermetallics 2012, 29, 123-32.
104. Ma, H.; Shi, L.; Xu, J.; Ma, E. Chill-cast in situ composites in the pseudo-ternary Mg-(Cu,Ni)-Y glass-forming system: microstructure and compressive properties. J. Mater. Res. 2006, 22, 314-25.
105. Rahman, M.; Dutta, N. K.; Roy, C. N. Magnesium alloys with tunable interfaces as bone implant materials. Front. Bioeng. Biotechnol. 2020, 8, 564.
106. Xu, H.; Hu, T.; Wang, M.; et al. Degradability and biocompatibility of magnesium-MAO: the consistency and contradiction between in-vitro and in-vivo outcomes. Arab. J. Chem. 2020, 13, 2795-805.
107. Rondanelli, M.; Faliva, M. A.; Tartara, A.; et al. An update on magnesium and bone health. Biometals 2021, 34, 715-36.
108. Herber, V.; Okutan, B.; Antonoglou, G.; G, S. N.; Payer, M. Bioresorbable magnesium-based alloys as novel biomaterials in oral bone regeneration: general review and clinical perspectives. J. Clin. Med. 2021, 10, 1842.
109. Ding, P.; Liu, Y.; He, X.; Liu, D.; Chen, M. In vitro and in vivo biocompatibility of Mg-Zn-Ca alloy operative clip. Bioact. Mater. 2019, 4, 236-44.
110. Uddin, M. S.; Hall, C.; Murphy, P. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants. Sci. Technol. Adv. Mater. 2015, 16, 053501.
111. Xue, D.; Yun, Y.; Tan, Z.; Dong, Z.; Schulz, M. J. In vivo and in vitro degradation behavior of magnesium alloys as biomaterials. JMater. Sci. Technol. 2012, 28, 261-7.
112. Guo, K. W. A review of magnesium/magnesium alloys corrosion and its protection. Recent. Pat. Corros. Sci. 2020, 2, 13-21.
113. Kannan, M. B.; Raman, R. K. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials 2008, 29, 2306-14.
114. Ng, W.; Chiu, K.; Cheng, F. Effect of pH on the in vitro corrosion rate of magnesium degradable implant material. Mater. Scie. Eng. C. 2010, 30, 898-903.
115. Törne, K.; Örnberg, A.; Weissenrieder, J. The influence of buffer system and biological fluids on the degradation of magnesium. J. Biomed. Mater. Res. B. Appl. Biomater. 2017, 105, 1490-502.
116. Mueller, W. D.; de, M. M. F.; Nascimento, M. L.; Zeddies, M. Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media. J. Biomed. Mater. Res. A. 2009, 90, 487-95.
117. Kirkland, N. T.; Birbilis, N.; Staiger, M. P. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta. Biomater. 2012, 8, 925-36.
118. Kumar, S.; Katyal, P.; Chaudhary, R.; Singh, V. Assessment of factors influencing bio-corrosion of magnesium based alloy implants: a review. Mater. Today:. Proc. 2022, 56, 2680-9.
119. Kamrani, S.; Fleck, C. Biodegradable magnesium alloys as temporary orthopaedic implants: a review. Biometals 2019, 32, 185-93.
120. Liu, C.; Xin, Y.; Tian, X.; Chu, P. K. Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin. J. Mater. Res. 2007, 22, 1806-14.
121. Li, X.; Liu, X.; Wu, S.; Yeung, K. W. K.; Zheng, Y.; Chu, P. K. Design of magnesium alloys with controllable degradation for biomedical implants: from bulk to surface. Acta. Biomater. 2016, 45, 2-30.
122. Xin, Y.; Liu, C.; Zhang, X.; Tang, G.; Tian, X.; Chu, P. K. Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. J. Mater. Res. 2007, 22, 2004-11.
123. Alawi AM, Majoni SW, Falhammar H. Magnesium and human health: perspectives and research directions. Int. J. Endocrinol. 2018, 2018, 9041694.
124. Gums, J. G. Magnesium in cardiovascular and other disorders. Am. J. Health. Syst. Pharm. 2004, 61, 1569-76.
125. Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in prevention and therapy. Nutrients 2015, 7, 8199-226.
127. Zhu, S.; Wu, C.; Li, G.; Zheng, Y.; Nie, J. Creep properties of biodegradable Zn-0.1Li alloy at human body temperature: implications for its durability as stents. Mater. Res. Lett. 2019, 7, 347-53.
128. Li, H.; Yang, H.; Zheng, Y.; Zhou, F.; Qiu, K.; Wang, X. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Mater. Des. 2015, 83, 95-102.
129. Bowen, P. K.; Guillory, R. J.; Shearier, E. R.; et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Mater. Sci. Eng. C. 2015, 56, 467-72.
130. Khan, A. R.; Grewal, N. S.; Zhou, C.; Yuan, K.; Zhang, H.; Jun, Z. Recent advances in biodegradable metals for implant applications: exploring in vivo and in vitro responses. Results. Eng. 2023, 20, 101526.
131. Moravej, M.; Mantovani, D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int. J. Mol. Sci. 2011, 12, 4250-70.
132. Bin, S. J. B.; Fong, K. S.; Chua, B. W.; Gupta, M. Mg-based bulk metallic glasses: a review of recent developments. J. Magnes. Alloys. 2022, 10, 899-914.
133. Manescu, P. V.; Antoniac, I.; Antoniac, A.; et al. Bone regeneration induced by patient-adapted Mg alloy-based scaffolds for bone defects: present and future perspectives. Biomimetics 2023, 8, 618.
134. Vahidgolpayegani, A.; Wen, C.; Hodgson, P.; Li, Y. 2-Production methods and characterization of porous Mg and Mg alloys for biomedical applications. Available from: https://www.sciencedirect.com/science/article/pii/B9780081012895000020. [Last accessed on 6 Mar 2025].
135. Uppal, G.; Thakur, A.; Chauhan, A.; Bala, S. Magnesium based implants for functional bone tissue regeneration-a review. J. Magnes. Alloys. 2022, 10, 356-86.
136. Zheng, K.; Kapp, M.; Boccaccini, A. R. Protein interactions with bioactive glass surfaces: a review. Appl. Mater. Today. 2019, 15, 350-71.
137. Oliver, J. N.; Su, Y.; Lu, X.; Kuo, P. H.; Du, J.; Zhu, D. Bioactive glass coatings on metallic implants for biomedical applications. Bioact. Mater. 2019, 4, 261-70.
138. Yang, Y.; Lu, C.; Yang, M.; et al. Copper-doped mesoporous bioactive glass endows magnesium-based scaffold with antibacterial activity and corrosion resistance. Mater. Chem. Front. 2021, 5, 7228-40.
139. Yazdimamaghani, M.; Razavi, M.; Vashaee, D.; Pothineni, V. R.; Rajadas, J.; Tayebi, L. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications. Appl. Surf. Sci. 2015, 338, 137-45.
140. Metal magnesium market (by application: die casting, aluminum alloys, titanium reduction, iron & steel making) - global industry analysis, size, share, growth, trends, revenue, regional outlook 20222030. Available from: https://www.visionresearchreports.com/metal-magnesium-market/39159. [Last accessed on 6 Mar 2025].
141. Li, M.; Benn, F.; Derra, T.; et al. Microstructure, mechanical properties, corrosion resistance and cytocompatibility of WE43 Mg alloy scaffolds fabricated by laser powder bed fusion for biomedical applications. Mater. Sci. Eng. C. 2021, 119, 111623.
142. Wu, C.; Zai, W.; Man, H. Additive manufacturing of ZK60 magnesium alloy by selective laser melting: parameter optimization, microstructure and biodegradability. Mater. Today. Commun. 2021, 26, 101922.
143. Yang, Y.; Lu, C.; Peng, S.; et al. Laser additive manufacturing of Mg-based composite with improved degradation behaviour. Virt. Phys. Prototyp. 2020, 15, 278-93.
144. Yao, X.; Tang, J.; Zhou, Y.; et al. Surface modification of biomedical Mg-Ca and Mg-Zn-Ca alloys using selective laser melting: corrosion behaviour, microhardness and biocompatibility. J. Magnes. Alloys. 2021, 9, 2155-68.
145. Xu, R.; Zhao, M.; Zhao, Y.; et al. Improved biodegradation resistance by grain refinement of novel antibacterial ZK30-Cu alloys produced via selective laser melting. Mater. Lett. 2019, 237, 253-7.
146. Yin, Y.; Huang, Q.; Liang, L.; et al. In vitro degradation behavior and cytocompatibility of ZK30/bioactive glass composites fabricated by selective laser melting for biomedical applications. J. Alloys. Compd. 2019, 785, 38-45.
147. Shuai, C.; Liu, L.; Zhao, M.; et al. Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique. J. Mater. Sci. Technol. 2018, 34, 1944-52.
148. Sezer, N.; Evis, Z.; Kayhan, S. M.; Tahmasebifar, A.; Koç, M. Review of magnesium-based biomaterials and their applications. J. Magnes. Alloys. 2018, 6, 23-43.
149. Zivic, F.; Grujović, N.; Manivasagam, G.; Richard, C.; Landoulsi, J.; Petrovic, V. The potential of magnesium alloys as bioabsorbable/ biodegradable implants for biomedical applications. Tribol. Ind. 2014, 36, 67-73. Available from: https://www.tribology.rs/journals/2014/2014-1/8.pdf. [Last accessed on 24 Mar 2025]
150. Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S. Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng. C. 2016, 68, 948-63.
151. Alaneme, K. K.; Kareem, S. A.; Olajide, J. L.; Sadiku, R. E.; Bodunrin, M. O. Computational biomechanical and biodegradation integrity assessment of Mg-based biomedical devices for cardiovascular and orthopedic applications: a review. Int. J. Lightweight. Mater. Manufacture. 2022, 5, 251-66.
152. Bowen, P. K.; Shearier, E. R.; Zhao, S.; et al. Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys. Adv. Healthc. Mater. 2016, 5, 1121-40.
153. Jiang, J.; Qian, Y.; Huang, H.; Niu, J.; Yuan, G. Biodegradable Zn-Cu-Mn alloy with suitable mechanical performance and in vitro degradation behavior as a promising candidate for vascular stents. Biomater. Adv. 2022, 133, 112652.
154. Borhani, S.; Hassanajili, S.; Ahmadi, T. S. H.; Rabbani, S. Cardiovascular stents: overview, evolution, and next generation. Prog. Biomater. 2018, 7, 175-205.
155. Negrescu, A.; Necula, M.; Costache, M.; Cimpean, A. In vitro and in vivo biological performance of Mg-based bone implants. Rev. Biol. Biomed. Sci. 2020, 3, 11-41.
156. Rahim, S. A.; Joseph, M. A.; Sampath, K. T. S.; T, H. Recent progress in surface modification of Mg alloys for biodegradable orthopedic applications. Front. Mater. 2022, 9, 848980.
157. Tian, P.; Liu, X. Surface modification of biodegradable magnesium and its alloys for biomedical applications. Regen. Biomater. 2015, 2, 135-51.
158. Papenberg, N. P.; Gneiger, S.; Weißensteiner, I.; Uggowitzer, P. J.; Pogatscher, S. Mg-alloys for forging applications-a review. Materials 2020, 13, 985;.
159. Riaz, U.; Shabib, I.; Haider, W. The current trends of Mg alloys in biomedical applications-a review. J. Biomed. Mater. Res. B. Appl. Biomater. 2019, 107, 1970-96.
160. Bedair, T. M.; Heo, Y.; Ryu, J.; Bedair, H. M.; Park, W.; Han, D. K. Biocompatible and functional inorganic magnesium ceramic particles for biomedical applications. Biomater. Sci. 2021, 9, 1903-23.
161. Canales, D. A.; Reyes, F.; Saavedra, M.; et al. Electrospun fibers of poly (lactic acid) containing bioactive glass and magnesium oxide nanoparticles for bone tissue regeneration. Int. J. Biol. Macromol. 2022, 210, 324-36.
162. Babaremu, K. O.; John, M. E.; Mfoh, U.; Akinlabi, E. T.; Okokpujie, I. P. Behavioral characteristics of magnesium as a biomaterial for surface engineering application. J. Bio. Tribo. Corros. 2021, 7, 579.
163. Dieringa, H.; Hort, N.; Letzig, D.; et al. Mg alloys: challenges and achievements in controlling performance, and future application perspectives. In: Orlov D, Joshi V, Solanki KN, Neelameggham NR, editors. Magnesium technology 2018. Cham: Springer International Publishing; 2018. pp. 3-14.
164. Laws, K. J.; Shamlaye, K. F.; Granata, D.; Koloadin, L. S.; Löffler, J. F. Electron-band theory inspired design of magnesium-precious metal bulk metallic glasses with high thermal stability and extended ductility. Sci. Rep. 2017, 7, 3400.
166. Axinte, E. Metallic glasses from “alchemy” to pure science: present and future of design, processing and applications of glassy metals. Mater. Des. 2012, 35, 518-56.
167. Bonithon, R.; Lupton, C.; Roldo, M.; et al. Open-porous magnesium-based scaffolds withstand in vitro corrosion under cyclic loading: a mechanistic study. Bioact. Mater. 2023, 19, 406-17.
168. Yusop, A. H. M.; Alsakkaf, A.; Kadir, M. R. A.; Sukmana, I.; Nur, H. Corrosion of porous Mg and Fe scaffolds: a review of mechanical and biocompatibility responses. Corros. Eng. Sci. Technol. 2021, 56, 310-26.
169. Kulekci, M. K. Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 2008, 39, 851-65.
170. Rahman, M.; Li, Y.; Wen, C. HA coating on Mg alloys for biomedical applications: a review. J. Magnes. Alloys. 2020, 8, 929-43.
172. Gao, J. Design of new metallic glass composites and nanostructured alloys with improved mechanical properties. University of Sheffield; 2016. Available from: https://etheses.whiterose.ac.uk/12404/. [Last accessed on 6 Mar 2025].
173. Zhang, T.; Wang, W.; Liu, J.; Wang, L.; Tang, Y.; Wang, K. A review on magnesium alloys for biomedical applications. Front. Bioeng. Biotechnol. 2022, 10, 953344.
174. Yi, J.; Xia, X. X.; Zhao, D. Q.; Pan, M. X.; Bai, H. Y.; Wang, W. H. Micro‐and nanoscale metallic glassy fibers. Adv. Eng. Mater. 2010, 12, 1117-22.
175. Zberg, B.; Arata, E. R.; Uggowitzer, P. J.; Löffler, J. F. Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta. Mater. 2009, 57, 3223-31.
176. Lin, C. H.; Huang, C. H.; Chuang, J. F.; Huang, J. C.; Jang, J. S.; Chen, C. H. Rapid screening of potential metallic glasses for biomedical applications. Mater. Sci. Eng. C. 2013, 33, 4520-6.
177. Balasubramanian, S. Magnetron sputtered magnesium-based thin film metallic glasses for bioimplants. Biointerphases 2021, 16, 011005.
178. Kiani, F.; Wen, C.; Li, Y. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites-a review. Acta. Biomater. 2020, 103, 1-23.
179. Rajan, S. T.; Arockiarajan, A. Thin film metallic glasses for bioimplants and surgical tools: a review. J. Alloys. Compd. 2021, 876, 159939.
180. Butt, M. A. Thin-film coating methods: a successful marriage of high-quality and cost-effectiveness-a brief exploration. Coatings 2022, 12, 1115.
181. Gibson, D. R.; Brinkley, I.; Waddell, E. M.; Walls, J. M. Closed field magnetron sputtering: new generation sputtering process for optical coatings. Adv. Opt. Thin. Films. III. 2008, 7101, 107-18.
182. Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering physical vapour deposition (PVD) coatings: a critical review on process improvement and market trend demands. Coatings 2018, 8, 402.
183. Mcclanahan, E. D.; Laegreid, N. Production of thin films by controlled deposition of sputtered material. In: Behrisch R, Wittmaack K, editors. Sputtering by particle bombardment III. Berlin: Springer Berlin Heidelberg; 1991. pp. 339-77.
184. Safi, I. Recent aspects concerning DC reactive magnetron sputtering of thin films: a review. Surf. Coat. Technol. 2000, 127, 203-18.
185. Maissel, L. I.; Schaible, P. M. Thin films deposited by bias sputtering. J. Appl. Phys. 1965, 36, 237-42.
186. Wasa, K.; Kitabatake, M.; Adachi, H. Thin film materials technology: sputtering of control compound materials. Springer Science & Business Media; 2004. p. 518. Available from: https://books.google.com/books?hl=zh-CN&lr=&id=dTmAsG07D00C&oi=fnd&pg=PA1&dq=Wasa+K,+Kitabatake+M,+Adachi+H.+Thin+film+materials+technology:+sputtering+of+control+compound+materials.+Springer+Science+%26+Business+Media%3B+2004.+p.+518.%5B&ots=ck7T0a6jiV&sig=lE6YIkL9Fq0YKB51_09tjoQerFE#v=onepage&q&f=false. [Last accessed on 6 Mar 2025].
187. Garg, R.; Gonuguntla, S.; Sk, S.; et al. Sputtering thin films: materials, applications, challenges and future directions. Adv. Colloid. Interface. Sci. 2024, 330, 103203.
188. Aissani, L.; Alhussein, A.; Zia, A.; Mamba, G.; Rtimi, S. Magnetron sputtering of transition metal nitride thin films for environmental remediation. Coatings 2022, 12, 1746.
189. Wu, E. A. Materials engineering for compatible chemistries in sodium solid-state-batteries and thin-film solid oxide fuel cells. ProQuest; 2024. Available from: https://www.proquest.com/openview/7565d4c01aad601bfa8ec8b32ec14c2f/1?pq-origsite=gscholar&cbl=18750&diss=y. [Last accessed on 6 Mar 2025].
190. Li, Z.; Mi, B.; Ma, X.; et al. Review of thin-film resistor sensors: exploring materials, classification, and preparation techniques. Chem. Eng. J. 2023, 477, 147029.
191. Haque, M. M.; Mahjabin, S.; Islam, M. A.; et al. Modulation of optoelectronic properties of WO3 thin film via Cr doping through RF co-sputtering. Inorg. Chem. Commun. 2025, 114300.
192. Liu, J.; Fu, Y.; Tang, Y.; et al. Thickness dependent structural evolution in Mg-Zn-Ca thin film metallic glasses. J. Alloys. Compd. 2018, 742, 524-35.
193. Yu, H.; Wang, J.; Shi, X.; Louzguine-luzgin, D. V.; Wu, H.; Perepezko, J. H. Ductile biodegradable Mg-based metallic glasses with excellent biocompatibility. Adv. Funct. Mater. 2013, 23, 4793-800.
194. Xu, Z.; Smith, C.; Chen, S.; Sankar, J. Development and microstructural characterizations of Mg-Zn-Ca alloys for biomedical applications. Mater. Sci. Eng. B. 2011, 176, 1660-5.
195. Zhang, S.; Zhang, X.; Zhao, C.; et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta. Biomater. 2010, 6, 626-40.
196. Zhang, B.; Hou, Y.; Wang, X.; Wang, Y.; Geng, L. Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions. Mater. Sci. Eng. C. 2011, 31, 1667-73.
197. Ortega, Y.; Monge, M. A.; Pareja, R. The precipitation process in Mg-Ca-(Zn) alloys investigated by positron annihilation spectroscopy. J. Alloys. Compd. 2008, 463, 62-6.
198. Farahany, S.; Bakhsheshi-rad, H. R.; Idris, M. H.; Abdul, K. M. R.; Lotfabadi, A. F.; Ourdjini, A. In-situ thermal analysis and macroscopical characterization of Mg-xCa and Mg-0.5Ca-xZn alloy systems. Thermochim. Acta. 2012, 527, 180-9.
199. Xu, X.; Lu, P.; Guo, M.; Fang, M. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release. Appl. Surf. Sci. 2010, 256, 2367-71.
200. Zhang, X.; Wang, Z.; Yuan, G.; Xue, Y. Improvement of mechanical properties and corrosion resistance of biodegradable Mg-Nd-Zn-Zr alloys by double extrusion. Mater. Sci. Eng. B. 2012, 177, 1113-9.
201. Olugbade, T. O.; Abioye, T. E.; Farayibi, P. K.; et al. Electrochemical properties of MgZnCa-based thin film metallic glasses fabricated by magnetron sputtering deposition coated on a stainless steel substrate. Anal. Lett. 2020, 54, 1588-602.
202. Han, Y.; Song, J. Novel Mg2Zr5O12/Mg2Zr5O12-ZrO2-MgF2 gradient layer coating on magnesium formed by microarc oxidation. J. Am. Ceram. Soc. 2009, 92, 1813-6.
203. Zhang, W.; Li, M.; Chen, Q.; Hu, W.; Zhang, W.; Xin, W. Effects of Sr and Sn on microstructure and corrosion resistance of Mg-Zr-Ca magnesium alloy for biomedical applications. Mater. Des. 2012, 39, 379-83.
204. Lu, W.; He, M.; Yu, D.; et al. Ductile behavior and excellent corrosion resistance of Mg-Zn-Yb-Ag metallic glasses. Mater. Des. 2021, 210, 110027.
205. Tsai, P.; Lee, C.; Song, S.; et al. Improved mechanical properties and corrosion resistance of Mg-based bulk metallic glass composite by coating with Zr-based metallic glass thin film. Coatings 2020, 10, 1212.
206. Li, J.; Gittleson, F. S.; Liu, Y.; et al. Exploring a wider range of Mg-Ca-Zn metallic glass as biocompatible alloys using combinatorial sputtering. Chem. Commun. 2017, 53, 8288-91.
207. Zhao, S.; Tayyebi, M.; Mahdireza,; Hu, G. A review of magnesium corrosion in bio-applications: mechanism, classification, modeling, in-vitro, and in-vivo experimental testing, and tailoring Mg corrosion rate. J. Mater. Sci. 2023, 58, 12158-81.
208. Tong, P.; Sheng, Y.; Hou, R.; Iqbal, M.; Chen, L.; Li, J. Recent progress on coatings of biomedical magnesium alloy. Smart. Mater. Med. 2022, 3, 104-16.
209. Kania, A.; Szindler, M. M.; Szindler, M. Structure and corrosion behavior of TiO2 thin films deposited by ALD on a biomedical magnesium alloy. Coatings 2021, 11, 70.
210. Rahman, M.; Dutta, N. K.; Choudhury, N. R. Microroughness induced biomimetic coating for biodegradation control of magnesium. Mater. Sci. Eng. C. 2021, 121, 111811.
211. Heimann, R. B. Magnesium alloys for biomedical application: advanced corrosion control through surface coating. Surf. Coat. Technol. 2021, 405, 126521.
212. Vance, A.; Bari, K.; Arjunan, A. Compressive performance of an arbitrary stiffness matched anatomical Ti64 implant manufactured using direct metal laser sintering. Mater. Des. 2018, 160, 1281-94.
213. Nasello, G.; Vautrin, A.; Pitocchi, J.; et al. Mechano-driven regeneration predicts response variations in large animal model based on scaffold implantation site and individual mechano-sensitivity. Bone 2021, 144, 115769.
214. Bashkuev, M.; Checa, S.; Postigo, S.; Duda, G.; Schmidt, H. Computational analyses of different intervertebral cages for lumbar spinal fusion. J. Biomech. 2015, 48, 3274-82.
215. Md, S. A. P.; Abdul, R. R. A.; Harun, M. N.; et al. The influence of flow rates on the dynamic degradation behaviour of porous magnesium under a simulated environment of human cancellous bone. Mater. Des. 2017, 122, 268-79.
216. Pobloth, A. M.; Checa, S.; Razi, H.; et al. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Sci. Transl. Med. 2018, 10, eaam8828.
217. Reddy, T. H.; Pal, S.; Kumar, K. C.; Mohan, M. K.; Kokol, V. Finite element analysis for mechanical response of magnesium foams with regular structure obtained by powder metallurgy method. Procedia. Eng. 2016, 149, 425-30.
218. Cho, S. M.; Yang, B. E.; Kim, W. H.; et al. Biomechanical stability of magnesium plate and screw fixation systems in LeFort I osteotomy: a three-dimensional finite element analysis. Maxillofac Plast Reconstr Surg 2024;46:40.
219. Alshammari, A.; Alabdah, F.; Wang, W.; Cooper, G. Virtual design of 3D-printed bone tissue engineered scaffold shape using mechanobiological modeling: relationship of scaffold pore architecture to bone tissue formation. Polymers 2023, 15, 3918.
220. Jain, S.; Yassin, M. A.; Fuoco, T.; et al. Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification. J. Tissue. Eng. 2020, 11, 2041731420954316.
221. Loerakker, S.; Ristori, T. Computational modeling for cardiovascular tissue engineering: the importance of including cell behavior in growth and remodeling algorithms. Curr. Opin. Biomed. Eng. 2020, 15, 1-9.
222. Post, J. N.; Loerakker, S.; Merks, R. M. H.; Carlier, A. Implementing computational modeling in tissue engineering: where disciplines meet. Tissue. Eng. Part. A. 2022, 28, 542-54.
223. Donnaloja, F.; Jacchetti, E.; Soncini, M.; Raimondi, M. T. Natural and synthetic polymers for bone scaffolds optimization. Polymers 2020, 12, 905.
224. Wang, L.; Wang, C.; Wu, S.; Fan, Y.; Li, X. Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomater. Sci. 2020, 8, 2714-33.
225. Pina, S.; Ribeiro, V. P.; Marques, C. F.; et al. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials 2019, 12, 1824.
226. Ghosh, R.; Chanda, S.; Chakraborty, D. Application of finite element analysis to tissue differentiation and bone remodelling approaches and their use in design optimization of orthopaedic implants: a review. Int. J. Numer. Method. Biomed. Eng. 2022, 38, e3637.
227. Verma, R.; Kumar, J.; Singh, N. K.; Rai, S. K.; Saxena, K. K.; Xu, J. Design and analysis of biomedical scaffolds using TPMS-based porous structures inspired from additive manufacturing. Coatings 2022, 12, 839.
228. Gryko, A.; Prochor, P.; Sajewicz, E. Finite element analysis of the influence of porosity and pore geometry on mechanical properties of orthopaedic scaffolds. J. Mech. Behav. Biomed. Mater. 2022, 132, 105275.
229. Noordin MA, Saad APB, Ngadiman NHA, Mustafa NS, bin Mohd Yusof N, Ma’aram A. Finite element analysis of porosity effects on mechanical properties for tissue engineering scaffold. Biointerface. Res. Appl. Chem. 2020, 11, 8836-43.
230. Kakarla, A. B.; Kong, I.; Nukala, S. G.; Kong, W. Mechanical behaviour evaluation of porous scaffold for tissue-engineering applications using finite element analysis. J. Compos. Sci. 2022, 6, 46.
231. Putra, R. U.; Prakoso, A. T.; Nugrasyah, A.; et al. Fatigue prediction of porous magnesium bone scaffold using finite element method. 4th Forum in Research, Science, and Technology (FIRST-T1-T2-2020). Palembang Indonesia. Atlantis Press; 2021
232. Maslov, L. B. Biomechanical model and numerical analysis of tissue regeneration within a porous scaffold. Mech. Solids. 2020, 55, 1115-34.
233. Jahir-hussain, M. J.; Maaruf, N. A.; Esa, N. E. F.; Jusoh, N. The effect of pore geometry on the mechanical properties of 3D-printed bone scaffold due to compressive loading. IOP. Conf. Ser. Mater. Sci. Eng. 2021, 1051, 012016.
234. Joshi, A.; Dias, G.; Staiger, M. P. In silico modelling of the corrosion of biodegradable magnesium-based biomaterials: modelling approaches, validation and future perspectives. Biomater. Transl. 2021, 2, 257-71.
235. Boland, E. L.; Shine, C. J.; Kelly, N.; Sweeney, C. A.; McHugh, P. E. A review of material degradation modelling for the analysis and design of bioabsorbable stents. Ann. Biomed. Eng. 2016, 44, 341-56.
236. Kovacevic, S.; Ali, W.; Martínez-Pañeda, E.; LLorca, J. Phase-field modeling of pitting and mechanically-assisted corrosion of Mg alloys for biomedical applications. Acta. Biomater. 2023, 164, 641-58.
237. Liu, B.; Liu, J.; Wang, C.; et al. High temperature oxidation treated 3D printed anatomical WE43 alloy scaffolds for repairing periarticular bone defects: In vitro and in vivo studies. Bioact Mater 2024;32:177-89.
238. Liebl, H.; Garcia, E. G.; Holzner, F.; et al. In-vivo assessment of femoral bone strength using finite element analysis (FEA) based on routine MDCT imaging: a preliminary study on patients with vertebral fractures. PLoS. One. 2015, 10, e0116907.
239. Xu, J.; Wang, K.; Gao, M.; Tu, Z.; Zhang, S.; Tan, J. Biomechanical performance design of joint prosthesis for medical rehabilitation via generative structure optimization. Comput. Methods. Biomech. Biomed. Engin. 2020, 23, 1163-79.
240. Nourisa, J. The application of agent-based modeling and fuzzy-logic controllers for the study of magnesium biomaterials. Available from: https://macau.uni-kiel.de/receive/macau_mods_00004014. [Last accessed on 6 Mar 2025].
241. Nourisa, J.; Zeller-Plumhoff, B.; Helmholz, H.; Luthringer-Feyerabend, B.; Ivannikov, V.; Willumeit-Römer, R. Magnesium ions regulate mesenchymal stem cells population and osteogenic differentiation: a fuzzy agent-based modeling approach. Comput. Struct. Biotechnol. J. 2021, 19, 4110-22.
242. Perier-Metz, C.; Cipitria, A.; Hutmacher, D. W.; Duda, G. N.; Checa, S. An in silico model predicts the impact of scaffold design in large bone defect regeneration. Acta. Biomater. 2022, 145, 329-41.
243. Pant, A.; Paul, E.; Niebur, G. L.; Vahdati, A. Integration of mechanics and biology in computer simulation of bone remodeling. Prog. Biophys. Mol. Biol. 2021, 164, 33-45.
244. Lee, P. S.; Sriperumbudur, K. K.; Dawson, J.; van, R. U.; Appali, R. Mathematical models on bone cell homeostasis and kinetics in the presence of electric fields: a review. Prog. Biomed. Eng. 2024, 7, 012004.
245. Gaziano, P.; Marino, M. Computational modeling of cell motility and clusters formation in enzyme-sensitive hydrogels. Meccanica 2024, 59, 1335-49.
246. Santos BC, Noritomi PY, da Silva JVL, Maia IA, Manzini BM. Biological multiscale computational modeling: a promising tool for 3D bioprinting and tissue engineering. Bioprinting 2022, 28, e00234.
247. Gaziano, P.; Marino, M. A phase-field model of cell motility in biodegradable hydrogel scaffolds for tissue engineering applications. Comput. Mech. 2024, 74, 45-66.
248. Pires, T.; Dunlop, J. W. C.; Fernandes, P. R.; Castro, A. P. G. Challenges in computational fluid dynamics applications for bone tissue engineering. Proc. Math. Phys. Eng. Sci. 2022, 478, 20210607.
249. Omar, A. M.; Hassan, M. H.; Daskalakis, E.; et al. Geometry-based computational fluid dynamic model for predicting the biological behavior of bone tissue engineering scaffolds. J. Funct. Biomater. 2022, 13, 104.
250. Kumar, M.; Mohol, S. S.; Sharma, V. A computational approach from design to degradation of additively manufactured scaffold for bone tissue engineering application. RPJ. 2022, 28, 1956-67.
251. d’Adamo, A.; Salerno, E.; Corda, G.; et al. Experimental measurements and CFD modelling of hydroxyapatite scaffolds in perfusion bioreactors for bone regeneration. Regen. Biomater. 2023, 10, rbad002.
252. Channasanon, S.; Kaewkong, P.; Chantaweroad, S.; et al. Scaffold geometry and computational fluid dynamics simulation supporting osteogenic differentiation in dynamic culture. Comput. Methods. Biomech. Biomed. Engin. 2024, 27, 587-98.
253. Manescu, P. V.; Paltanea, G.; Antoniac, A.; et al. Mechanical and computational fluid dynamic models for magnesium-based implants. Materials 2024, 17, 830.
254. Wu, C.; Entezari, A.; Zheng, K.; et al. A machine learning-based multiscale model to predict bone formation in scaffolds. Nat. Comput. Sci. 2021, 1, 532-41.
255. Li, H.; Liu, Y.; Pang, S.; Liaw, P. K.; Zhang, T. Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment. Intermetallics 2016, 73, 31-9.
256. Jiang, L.; Bao, M.; Dong, Y.; Yuan, Y.; Zhou, X.; Meng, X. Processing, production and anticorrosion behavior of metallic glasses: a critical review. J. Non-Cryst. Solids. 2023, 612, 122355.
257. Cao, J. D.; Kirkland, N. T.; Laws, K. J.; Birbilis, N.; Ferry, M. Ca-Mg-Zn bulk metallic glasses as bioresorbable metals. Acta. Biomater. 2012, 8, 2375-83.
258. rajendran R, Aggarwal D, Bonvalet Rolland M, Gruescu C, Shabadi R. Design and development of large-diameter Mg-Zn-Ca bulk metallic glass for biomedical applications: a mechanical and corrosion perspective. Intermetallics 2024, 175, 108520.
259. García-Aznar, J. M.; Nasello, G.; Hervas-Raluy, S.; Pérez, M. Á.; Gómez-Benito, M. J. Multiscale modeling of bone tissue mechanobiology. Bone 2021, 151, 116032.
260. Kendall, J. J.; Ledoux, C.; Marques, F. C.; et al. An in silico micro-multiphysics agent-based approach for simulating bone regeneration in a mouse femur defect model. Front. Bioeng. Biotechnol. 2023, 11, 1289127.
261. Shen, J.; Yong, L.; Chen, B.; et al. Effect of biocomposite mediated magnesium ionic micro-homeostasis on cell fate regulation and bone tissue regeneration. Compos. Part. B. Eng. 2023, 265, 110961.
262. Zhang, X.; Hao, Z. Computational models of magnesium medical implants degradation: a review. J. Phys. Conf. Ser. 2021, 1838, 012012.
263. Cai, Z.; Du, P.; Li, K.; Chen, L.; Xie, G. A review of the development of titanium-based and magnesium-based metallic glasses in the field of biomedical materials. Materials 2024, 17, 4587.
264. Dutta, S.; Roy, M. Recent developments in engineered magnesium scaffolds for bone tissue engineering. ACS. Biomater. Sci. Eng. 2023, 9, 3010-31.
265. Yao, X.; Tang, J.; Zhou, Y.; et al. Selective laser melting of an Mg/metallic glass hybrid for significantly improving chemical and mechanical performances. Appl. Surf. Sci. 2022, 580, 152229.
266. Lebrun, N.; Dupla, F.; Bruhier, H.; et al. Metallic glasses for biological applications and opportunities opened by laser surface texturing: a review. Appl. Surf. Sci. 2024, 670, 160617.
267. Ramya, M. Advances in biodegradable orthopaedic implants: optimizing magnesium alloy corrosion resistance for enhanced bone repair. Biomed. Mater. Devices. 2025, 3, 396-414.
268. Zhou, H.; Liang, B.; Jiang, H.; Deng, Z.; Yu, K. Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application. J. Magnes. Alloys. 2021, 9, 779-804.
269. Wang, H.; Yuan, H.; Wang, J.; et al. Influence of the second phase on protein adsorption on biodegradable Mg alloys’ surfaces: comparative experimental and molecular dynamics simulation studies. Acta. Biomater. 2021, 129, 323-32.
270. Cerqueira, A.; Romero-Gavilán, F.; García-Arnáez, I.; et al. Characterization of magnesium doped sol-gel biomaterial for bone tissue regeneration: the effect of Mg ion in protein adsorption. Mater. Sci. Eng. C. 2021, 125, 112114.
271. Wang, X.; Wang, C.; Chu, C.; Xue, F.; Li, J.; Bai, J. Structure-function integrated biodegradable Mg/polymer composites: design, manufacturing, properties, and biomedical applications. Bioact. Mater. 2024, 39, 74-105.
272. Zhao, Y. Understanding and design of metallic alloys guided by phase-field simulations. npj. Comput. Mater. 2023, 9, 1038.
273. Wang, J.; Meng, L.; Xie, W.; et al. Corrosion and in vitro cytocompatibility investigation on the designed Mg-Zn-Ag metallic glasses for biomedical application. J. Magnes. Alloys. 2024, 12, 1566-80.
274. Xu, L.; Liu, X.; Sun, K.; Fu, R.; Wang, G. Corrosion behavior in magnesium-based alloys for biomedical applications. Materials 2022, 15, 2613.
275. Rout, P. K.; Roy, S.; Ganguly, S.; Rathore, D. K. A review on properties of magnesium-based alloys for biomedical applications. Biomed. Phys. Eng. Express. 2022, 8, 042002.
276. Wang, P.; Mao, Y.; Zhou, X.; Wang, M.; He, M. Surface microstructure and corrosion resistance characterization of Mg-based amorphous alloys. J. Mater. Sci. 2024, 59, 20050-67.
277. Guo, J. L.; Januszyk, M.; Longaker, M. T. Machine learning in tissue engineering. Tissue. Eng. Part. A. 2023, 29, 2-19.
278. Salem, D. A.; Moharam, M. H.; Hashem, E. M. Development of machine learning regression models for predicting the performance of nanofibrous scaffolds for skin tissue engineering. J. Bio-X. Res. 2024, 7, 0008.
279. Gharibshahian, M.; Torkashvand, M.; Bavisi, M.; Aldaghi, N.; Alizadeh, A. Recent advances in artificial intelligent strategies for tissue engineering and regenerative medicine. Skin. Res. Technol. 2024, 30, e70016.
280. Nosrati, H.; Nosrati, M. Artificial intelligence in regenerative medicine: applications and implications. Biomimetics 2023, 8, 442.
282. Fan, J.; Xu, J.; Wen, X.; et al. The future of bone regeneration: artificial intelligence in biomaterials discovery. Mater. Today. Commun. 2024, 40, 109982.
283. Mai, T. T.; Nguyen, P. H.; Haque, N. A. N. M. M.; Pemen, G. A. J. M. Exploring regression models to enable monitoring capability of local energy communities for self-management in low-voltage distribution networks. IET. Smart. Grid. 2022, 5, 25-41.
284. Chen, J.; Dou, Y.; Li, S.; Xu, B.; Wang, T. Eutectic and bulk metallic glasses interpretation of Ca(Zr,Ti,Mg,Fe)-based binary biomedical materials via dual-cluster formulas model. Appl. Phys. A. 2024, 130, 8034.
285. Zhang, J. Y.; Zhou, Z. Q.; Zhang, Z. B.; et al. Recent development of chemically complex metallic glasses: from accelerated compositional design, additive manufacturing to novel applications. Mater. Futures. 2022, 1, 012001.
286. Wang, J.; Wang, C.; Rao, W.; Jung, I. Design and characterization of biodegradable Mg-Zn-Ag metallic glasses. Trans. Nonferrous. Met. Soc. China. 2024, 34, 2814-27.
287. Musthafa H, Walker J, Domagala M. Computational modelling and simulation of scaffolds for bone tissue engineering. Computation 2024, 12, 74.
288. Bin, S. J. B.; Fong, K. S.; Chua, B. W.; Gupta, M. Development of biocompatible bulk MgZnCa metallic glass with very high corrosion resistance in simulated body fluid. Materials 2022, 15, 8989.
289. Zhang, P.; Tan, J.; Tian, Y.; Yan, H.; Yu, Z. Research progress on selective laser melting (SLM) of bulk metallic glasses (BMGs): a review. Int. J. Adv. Manuf. Technol. 2022, 118, 2017-57.
290. Addissouky, T. A. Transforming toxicity assessment through microphysiology, bioprinting, and computational modeling. ACT. 2024, 9, 1-14.
291. Jabed, A.; Bhuiyan, M. N.; Haider, W.; Shabib, I. Distinctive features and fabrication routes of metallic-glass systems designed for different engineering applications: a review. Coatings 2023, 13, 1689.
292. Rajan S, Karthika M, Bendavid A, Subramanian B. Apatite layer growth on glassy Zr48Cu36Al8Ag8 sputtered titanium for potential biomedical applications. Appl. Surf. Sci. 2016, 369, 501-9.
293. Rajan, S. T.; Das, M.; Kumar, P. S.; Arockiarajan, A.; Subramanian, B. Biological performance of metal metalloid (TiCuZrPd:B) TFMG fabricated by pulsed laser deposition. Colloids. Surf. B. Biointerfaces. 2021, 202, 111684.
294. Yiu, P.; Diyatmika, W.; Bönninghoff, N.; Lu, Y.; Lai, B.; Chu, J. P. Thin film metallic glasses: properties, applications and future. J. Appl. Phys. 2020, 127, 030901.
295. Celarek, A.; Kraus, T.; Tschegg, E. K.; et al. PHB, crystalline and amorphous magnesium alloys: promising candidates for bioresorbable osteosynthesis implants? Mater. Sci. Eng. C. 2012, 32, 1503-10.
296. Hua, N.; Zhang, X.; Liao, Z.; et al. Dry wear behavior and mechanism of a Fe-based bulk metallic glass: description by Hertzian contact calculation and finite-element method simulation. J. Non-Cryst. Solids. 2020, 543, 120065.
297. Li, Y. Laser welding of metallic glass to crystalline metal in laser- foil-printing additive manufacturing. ProQuest. 2019. Available from: https://www.proquest.com/openview/968eddffd4c9393dc4440afe1475f31a/1?pq-origsite=gscholar&cbl=51922&diss=y. [Last accessed on 6 Mar 2025].