REFERENCES

1. Ma, Y.; Yang, M.; Yuan, F.; Wu, X. A review on heterogeneous nanostructures: a strategy for superior mechanical properties in metals. Metals 2019, 9, 598.

2. Yeh, J.; Chen, S.; Lin, S.; et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299-303.

3. Zhu, Y.; Wu, X. Heterostructured materials. Prog. Mater. Sci. 2023, 131, 101019.

4. Cheng, Z.; Zhou, H.; Lu, Q.; Gao, H.; Lu, L. Extra strengthening and work hardening in gradient nanotwinned metals. Science 2018, 362, eaau1925.

5. Pan, Q.; Zhang, L.; Feng, R.; et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility. Science 2021, 374, 984-9.

6. Shang, Z.; Sun, T.; Ding, J.; et al. Gradient nanostructured steel with superior tensile plasticity. Sci. Adv. 2023, 9, eadd9780.

7. Zhang, Y.; He, C.; Yu, Q.; et al. Nacre-like surface nanolaminates enhance fatigue resistance of pure titanium. Nat. Commun. 2024, 15, 6917.

8. Bai, H.; Chen, Y.; Delattre, B.; Tomsia, A. P.; Ritchie, R. O. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 2015, 1, e1500849.

9. Han, T.; Hou, C.; Zhao, Z.; et al. Simultaneous enhancement of strength and conductivity via self-assembled lamellar architecture. Nat. Commun. 2024, 15, 1863.

10. Wang, H.; Chen, D.; An, X.; et al. Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy. Sci. Adv. 2021, 7, eabe3105.

11. Gu, L.; Zhao, Y.; Li, Y.; et al. Ultrastrong and ductile medium-entropy alloys via hierarchical ordering. Sci. Adv. 2024, 10, eadn7553.

12. Duan, F.; Li, Q.; Jiang, Z.; et al. An order-disorder core-shell strategy for enhanced work-hardening capability and ductility in nanostructured alloys. Nat. Commun. 2024, 15, 6832.

13. Ameyama, K.; Cazes, F.; Couque, H.; et al. Harmonic structure, a promising microstructure design. Mater. Res. Lett. 2022, 10, 440-71.

14. Yang, W.; Luo, Z. P.; Bao, W. K.; Xie, H.; You, Z. S.; Jin, H. J. Light, strong, and stable nanoporous aluminum with native oxide shell. Sci. Adv. 2021, 7, eabb9471.

15. Vajpai, S. K.; Ota, M.; Zhang, Z.; Ameyama, K. Three-dimensionally gradient harmonic structure design: an integrated approach for high performance structural materials. Mater. Res. Lett. 2016, 4, 191-7.

16. Fang, T. H.; Li, W. L.; Tao, N. R.; Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 2011, 331, 1587-90.

17. Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817-22.

18. Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. Merger of structure and material in nacre and bone - perspectives on de novo biomimetic materials. Prog. Mater. Sci. 2009, 54, 1059-100.

19. Zhao, F.; Sun, M.; Li, X.; Guo, F.; Li, M. The manufacturing technology of iron swords from the capital of the Han Empire in China. SN. Appl. Sci. 2020, 2, 3312.

20. Yin, Z.; Yang, X.; Ma, X.; et al. Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment. Mater. Des. 2016, 105, 89-95.

21. Gopalan, H.; Chokshi, A. H. The mechanical behavior of nacre across length scales. J. Mech. Behav. Biomed. Mater. 2018, 78, 96-107.

22. Li, J.; Ma, X.; Lu, K.; Wang, Y.; Zhu, Y. Unusual deformation mechanisms evoked by hetero-zone interaction in a heterostructured FCC high-entropy alloy. Acta. Mater. 2025, 282, 120516.

23. Wu, X.; Yang, M.; Yuan, F.; et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl. Acad. Sci. USA. 2015, 112, 14501-5.

24. Wu, X.; Zhu, Y. Gradient and lamellar heterostructures for superior mechanical properties. MRS. Bull. 2021, 46, 244-9.

25. Zhu, Y. Introduction to heterostructured materials: a fast emerging field. Metall. Mater. Trans. A. 2021, 52, 4715-26.

26. Zhu, Y.; Wu, X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater. Res. Lett. 2019, 7, 393-8.

27. Zhu, Y. T.; Liao, X. Nanostructured metals: retaining ductility. Nat. Mater. 2004, 3, 351-2.

28. Zhu, Y.; Zhou, S.; Xiong, Z.; Liang, Y.; Xue, Y.; Wang, L. Enabling stronger eutectic high-entropy alloys with larger ductility by 3D printed directional lamellae. Addit. Manuf. 2021, 39, 101901.

29. Liu, C.; Liu, Y.; Wang, Q.; et al. Nano-dual-phase metallic glass film enhances strength and ductility of a gradient nanograined magnesium alloy. Adv. Sci. 2020, 7, 2001480.

30. Zhu, W.; Gao, X.; Yao, Y.; et al. Nanostructured high entropy alloys as structural and functional materials. ACS. Nano. 2024, 18, 12672-706.

31. Ma, Q. X.; Yang, H. J.; Wang, Z.; Shi, X. H.; Liaw, P. K.; Qiao, J. W. High strength and ductility in partially recrystallized Fe40Mn20Cr20Ni20 high-entropy alloys at cryogenic temperature. Microstructures 2022, 2, 2022015.

32. Xiao, B.; Liu, S.; Zhang, J.; et al. Environmental embrittlement behavior of high-entropy alloys. Microstructures 2023, 3, 2023006.

33. Xu, N.; Huang, Y.; Cao, Y.; Li, S.; Wang; Yd. Novel casting CoCrNiAl eutectic high entropy alloys with high strength and good ductility. Microstructures 2023, 3, 2023015.

34. Ying, H.; Yang, X.; He, H.; et al. Formation of strong and ductile FeNiCoCrB network-structured high-entropy alloys by fluxing. Microstructures 2023, 3, 2023018.

35. Ren, J.; Zhang, Y.; Zhao, D.; et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature 2022, 608, 62-8.

36. Cao, B.; Zhao, W.; Jing, L.; et al. Heterostructure high-entropy alloys with exceptional thermal stability and resistance towards intermediate temperature embrittlement. J. Mater. Sci. Technol. 2024, 188, 228-33.

37. Zhu, Y.; Ameyama, K.; Anderson, P. M.; et al. Heterostructured materials: superior properties from hetero-zone interaction. Mater. Res. Lett. 2021, 9, 1-31.

38. Ye, Y.; Wang, Q.; Lu, J.; Liu, C.; Yang, Y. High-entropy alloy: challenges and prospects. Mater. Today. 2016, 19, 349-62.

39. Wang, Q.; Yang, Y.; Jiang, H.; Liu, C. T.; Ruan, H. H.; Lu, J. Superior tensile ductility in bulk metallic glass with gradient amorphous structure. Sci. Rep. 2014, 4, 4757.

40. Liu, Z.; Guo, S.; Liu, X.; et al. Micromechanical characterization of casting-induced inhomogeneity in an Al0.8CoCrCuFeNi high-entropy alloy. Scr. Mater. 2011, 64, 868-71.

41. Sarakinos, K.; Alami, J.; Konstantinidis, S. High power pulsed magnetron sputtering: a review on scientific and engineering state of the art. Surf. Coat. Technol. 2010, 204, 1661-84.

42. Ma, Y.; Li, L.; Qian, J.; et al. Materials and structure engineering by magnetron sputtering for advanced lithium batteries. Energy. Storage. Mater. 2021, 39, 203-24.

43. Liang, J.; Liu, Q.; Li, T.; et al. Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green. Chem. 2021, 23, 2834-67.

44. Costa, J. M.; Almeida, N. A. F. Ultrasound-assisted electrodeposition and synthesis of alloys and composite materials: a review. Ultrason. Sonochem. 2020, 68, 105193.

45. Kale, M. B.; Borse, R. A.; Gomaa, A. M. A.; Wang, Y. Electrocatalysts by electrodeposition: recent advances, synthesis methods, and applications in energy conversion. Adv. Funct. Mater. 2021, 31, 2101313.

46. Shi, Y.; Lee, C.; Tan, X.; et al. Atomic-level metal electrodeposition: synthetic strategies, applications, and catalytic mechanism in electrochemical energy conversion. Small. Struct. 2022, 3, 2100185.

47. Lu, Y.; Dong, Y.; Guo, S.; et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci. Rep. 2014, 4, 6200.

48. Shi, P.; Li, R.; Li, Y.; et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science 2021, 373, 912-8.

49. Zheng, S.; Beyerlein, I. J.; Carpenter, J. S.; et al. High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 2013, 4, 1696.

50. Majumdar J, Manna I. Laser material processing. Int. Mater. Rev. 2011, 56, 341-88.

51. Lee, H.; Lim, C. H. J.; Low, M. J.; Tham, N.; Murukeshan, V. M.; Kim, Y. Lasers in additive manufacturing: a review. Int. J. Precis. Eng. Manuf. Green. Technol. 2017, 4, 307-22.

52. Brighenti, R.; Cosma, M. P.; Marsavina, L.; Spagnoli, A.; Terzano, M. Laser-based additively manufactured polymers: a review on processes and mechanical models. J. Mater. Sci. 2021, 56, 961-98.

53. Zhang, J.; Song, B.; Wei, Q.; Bourell, D.; Shi, Y. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J. Mater. Sci. Technol. 2019, 35, 270-84.

54. Liu, H.; Lin, W.; Hong, M. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications. Light. Sci. Appl. 2021, 10, 162.

55. Gu, D.; Shi, X.; Poprawe, R.; Bourell, D. L.; Setchi, R.; Zhu, J. Material-structure-performance integrated laser-metal additive manufacturing. Science 2021, 372, eabg1487.

56. Jia, X.; Chen, Y.; Liu, L.; Wang, C.; Duan, J. Combined pulse laser: reliable tool for high-quality, high-efficiency material processing. Opt. Laser. Technol. 2022, 153, 108209.

57. Ji, W.; Zhou, R.; Vivegananthan, P.; See, W. M.; Gao, H.; Zhou, K. Recent progress in gradient-structured metals and alloys. Prog. Mater. Sci. 2023, 140, 101194.

58. Yang, T.; Jia, Z.; Chen, H.; et al. Mechanical design of the highly porous cuttlebone: a bioceramic hard buoyancy tank for cuttlefish. Proc. Natl. Acad. Sci. USA. 2020, 117, 23450-9.

59. Huang, W.; Lin, X. Laser additive manufacturing of high-performance metal components. Sci. Sin. Inf. 2015, 45, 1111-26.

60. Harish, V.; Ansari, M. M.; Tewari, D.; et al. Nanoparticle and nanostructure synthesis and controlled growth methods. Nanomaterials 2022, 12, 3226.

61. Zhu, K.; Vassel, A.; Brisset, F.; Lu, K.; Lu, J. Nanostructure formation mechanism of α-titanium using SMAT. Acta. Mater. 2004, 52, 4101-10.

62. Zuo, J.; Lin, X. High-power laser systems. Laser. Photonics. Rev. 2022, 16, 2100741.

63. Quazi, M. M.; Fazal, M. A.; Haseeb, A. S. M. A.; Yusof, F.; Masjuki, H. H.; Arslan, A. Laser-based surface modifications of aluminum and its alloys. Crit. Rev. Solid. State. Mater. Sci. 2016, 41, 106-31.

64. Vorobyev, A. Y.; Guo, C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser. Photonics. Rev. 2013, 7, 385-407.

65. Zhang, Z.; Lin, P.; Zhou, H.; Ren, L. Microstructure, hardness, and thermal fatigue behavior of H21 steel processed by laser surface remelting. Appl. Surf. Sci. 2013, 276, 62-7.

66. Wang, Z.; Lin, X.; Cao, Y.; Huang, W. Microstructure evolution in laser surface remelting of Ni-33wt.%Sn alloy. J. Alloys. Compd. 2013, 577, 309-14.

67. Siddiqui, A. A.; Dubey, A. K. Recent trends in laser cladding and surface alloying. Opt. Laser. Technol. 2021, 134, 106619.

68. Arif, Z. U.; Khalid, M. Y.; ur, R. E.; Ullah, S.; Atif, M.; Tariq, A. A review on laser cladding of high-entropy alloys, their recent trends and potential applications. J. Manuf. Process. 2021, 68, 225-73.

69. Braisted, W. Finite element simulation of laser shock peening. Int. J. Fatigue. 1999, 21, 719-24.

70. Liao, Y.; Suslov, S.; Ye, C.; Cheng, G. J. The mechanisms of thermal engineered laser shock peening for enhanced fatigue performance. Acta. Mater. 2012, 60, 4997-5009.

71. Huang, D.; Dong, Y.; Chen, H.; Zhou, Y.; Zhang, M.; Yan, M. Effects of processing parameters on a β-solidifying TiAl alloy fabricated by laser-based additive manufacturing. Microstructures 2022, 2, 2022019.

72. Dela Cruz, M. L.; Yakubov, V.; Li, X.; Ferry, M.; Zhang, M.; Yan, M. Microstructure evolution in laser powder bed fusion-built Fe-Mn-Si shape memory alloy. Microstructures 2023, 3, 2023012.

73. Liu, Z.; Tan, Z.; Zhou, Z.; et al. Hot isostatic pressing induced precipitation strengthening at room and high temperature of Ni-Fe-Cr-Al-V high-entropy alloy manufactured by laser powder bed fusion. Microstructures 2024, 4, 2024024.

74. Sefene, E. M. State-of-the-art of selective laser melting process: a comprehensive review. J. Manu. Syst. 2022, 63, 250-74.

75. Yadroitsev, I.; Gusarov, A.; Yadroitsava, I.; Smurov, I. Single track formation in selective laser melting of metal powders. J. Manuf. Process. 2010, 210, 1624-31.

76. Zhu, C.; Liu, T.; Qian, F.; et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano. Today. 2017, 15, 107-20.

77. Halani, P. R.; Kaya, I.; Shin, Y. C.; Karaca, H. E. Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser direct deposition. Mater. Sci. Eng. A. 2013, 559, 836-43.

78. Eisenbarth, D.; Borges, E. P. M.; Wirth, F.; Wegener, K. Spatial powder flow measurement and efficiency prediction for laser direct metal deposition. Surf. Coat. Technol. 2019, 362, 397-408.

79. Wilson, J. M.; Piya, C.; Shin, Y. C.; Zhao, F.; Ramani, K. Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J. Clean. Prod. 2014, 80, 170-8.

80. Bailey, N. S.; Katinas, C.; Shin, Y. C. Laser direct deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation, hardness, and residual stresses. J. Mater. Process. Technol. 2017, 247, 223-33.

81. Zhang, Z.; Ma, Y.; Yang, M.; et al. Improving ductility by coherent nanoprecipitates in medium entropy alloy. Int. J. Plasticity. 2024, 172, 103821.

82. Liu, H.; Liu, J.; Chen, P.; Yang, H. Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding. Opt. Laser. Technol. 2019, 118, 140-50.

83. Thevamaran, R.; Lawal, O.; Yazdi, S.; Jeon, S. J.; Lee, J. H.; Thomas, E. L. Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes. Science 2016, 354, 312-6.

84. Lou, L.; Li, Y.; Li, X.; et al. Directional magnetization reversal enables ultrahigh energy density in gradient nanostructures. Adv. Mater. 2021, 33, e2102800.

85. Gou, S.; Li, S.; Hu, H.; et al. Surface hardening of CrCoFeNi high-entropy alloys via Al laser alloying. Mater. Res. Lett. 2021, 9, 437-44.

86. Fu, W.; Huang, Y.; Sun, J.; Ngan, A. H. Strengthening CrFeCoNiMn0.75Cu0.25 high entropy alloy via laser shock peening. Int. J. Plasticity. 2022, 154, 103296.

87. Yuan, S.; Gao, Z.; Fu, H.; Cheung, C. F.; Yang, X. Superior corrosion-resistant nanostructured hypoeutectic CrCoNi-based medium-entropy alloy processed by laser surface remelting. J. Alloys. Compd. 2023, 967, 171802.

88. Zhang, B.; Chen, J.; Wang, P.; Sun, B.; Cao, Y. Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique. J. Mater. Sci. Technol. 2022, 111, 111-9.

89. Shen, J.; Choi, Y. T.; Yang, J.; et al. Fabrication of spatially-variable heterostructured CoCrFeMnNi high entropy alloy by laser processing. Mater. Sci. Eng. A. 2024, 896, 146272.

90. Gu, G. H.; Kim, E. S.; Kwon, H.; et al. Fabrication of multi-gradient heterostructured CoCrFeMnNi high-entropy alloy using laser metal deposition. Mater. Sci. Eng. A. 2022, 836, 142718.

91. Dobbelstein, H.; Gurevich, E. L.; George, E. P.; Ostendorf, A.; Laplanche, G. Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends. Addit. Manuf. 2019, 25, 252-62.

92. Guan, Y.; Chen, D.; Cui, X.; et al. A novel W/FeCoCrNi-based in-situ formed high-entropy alloy gradient coating with Laves-FCC dual-phase structure and synergistic friction behavior. Tribol. Int. 2024, 192, 109228.

93. Luo, J.; Sun, W.; Duan, R.; et al. Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance. J. Mater. Sci. Technol. 2022, 110, 43-56.

94. Zhang, Q.; Chen, Z.; Dong, Y.; Li, C.; Wang, Y. High strength and ductility eutectic high entropy alloy with unique core-shell structure. J. Alloys. Compd. 2024, 976, 173141.

95. Kumar, P.; Huang, S.; Cook, D. H.; et al. A strong fracture-resistant high-entropy alloy with nano-bridged honeycomb microstructure intrinsically toughened by 3D-printing. Nat. Commun. 2024, 15, 841.

96. Mu, Y.; He, L.; Deng, S.; et al. A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility. Acta. Mater. 2022, 232, 117975.

97. Huang, L.; Sun, Y.; Chen, N.; et al. Simultaneously enhanced strength-ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing. Mater. Sci. Eng. A. 2022, 830, 142327.

98. Sun, Y.; Zhang, C.; Ning, Z.; Sun, J.; Ngan, A. H.; Huang, Y. Additively manufactured low-gradient interfacial heterostructured medium-entropy alloy multilayers with superior strength and ductility synergy. Compos. Part. B. Eng. 2024, 280, 111522.

99. Mu, Y.; Sun, K.; Jia, Y.; et al. 3D-printed strong and ductile high-entropy alloys with orientation arranged nanostructure complex. J. Alloys. Compd. 2023, 968, 171824.

100. Miao, J.; Yao, H.; Wang, J.; Lu, Y.; Wang, T.; Li, T. Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment. J. Alloys. Compd. 2022, 894, 162380.

101. Luo, J.; Sun, W.; Liang, D.; et al. An ultra-strong and ductile crystalline-amorphous nanostructured surface layer on TiZrHfTaNb0.2 high-entropy alloy by laser surface processing. Mater. Des. 2023, 227, 111710.

102. Park, J. M.; Asghari-rad, P.; Zargaran, A.; et al. Nano-scale heterogeneity-driven metastability engineering in ferrous medium-entropy alloy induced by additive manufacturing. Acta. Mater. 2021, 221, 117426.

103. Wu, Y.; Cai, Y.; Wang, T.; et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett. 2014, 130, 277-80.

104. He, J.; Liu, W.; Wang, H.; et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta. Mater. 2014, 62, 105-13.

105. Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153-8.

106. Lu, Y.; Wu, S.; Gan, Y.; et al. Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application. Mater. Sci. Eng. C. Mater. Biol. Appl. 2015, 49, 517-25.

107. Senkov, O.; Semiatin, S. Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloys. Compd. 2015, 649, 1110-23.

108. Liu, W.; He, J.; Huang, H.; Wang, H.; Lu, Z.; Liu, C. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 2015, 60, 1-8.

109. Brif, Y.; Thomas, M.; Todd, I. The use of high-entropy alloys in additive manufacturing. Scr. Mater. 2015, 99, 93-6.

110. Niu, S.; Kou, H.; Guo, T.; Zhang, Y.; Wang, J.; Li, J. Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy. Mater. Sci. Eng. A. 2016, 671, 82-6.

111. Yoshida, S.; Bhattacharjee, T.; Bai, Y.; Tsuji, N. Friction stress and hall-petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing. Sc. Mater. 2017, 134, 33-6.

112. Huang, H.; Wu, Y.; He, J.; et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 2017, 29, 1701678.

113. Zhu, Z.; Nguyen, Q.; Ng, F.; et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scr. Mater. 2018, 154, 20-4.

114. Peyrouzet, F.; Hachet, D.; Soulas, R.; Navone, C.; Godet, S.; Gorsse, S. Selective laser melting of Al0.3CoCrFeNi high-entropy alloy: printability, microstructure, and mechanical properties. JOM. 2019, 71, 3443-51.

115. Zhu, Z. G.; An, X. H.; Lu, W. J.; et al. Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy. Mater. Res. Lett. 2019, 7, 453-9.

116. Yao, H.; Tan, Z.; He, D.; et al. High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting. J. Alloys. Compd. 2020, 813, 152196.

117. Kim, Y.; Baek, M.; Yang, S.; Lee, K. In-situ formed oxide enables extraordinary high-cycle fatigue resistance in additively manufactured CoCrFeMnNi high-entropy alloy. Addit. Manuf. 2021, 38, 101832.

118. Yao, N.; Lu, T.; Feng, K.; et al. Ultrastrong and ductile additively manufactured precipitation-hardening medium-entropy alloy at ambient and cryogenic temperatures. Acta. Mater. 2022, 236, 118142.

119. Wu, Y.; Zhao, X.; Chen, Q.; et al. Strengthening and fracture mechanisms of a precipitation hardening high-entropy alloy fabricated by selective laser melting. Virtual. Phys. Prototyp. 2022, 17, 451-67.

120. Lu, Y.; Wu, X.; Fu, Z.; et al. Ductile and ultrahigh-strength eutectic high-entropy alloys by large-volume 3D printing. J. Mater. Sci. Technol. 2022, 126, 15-21.

121. Liu, X.; Hu, R.; Lu, W.; et al. Temperature-dependent tensile deformation and plasticity loss mechanism of a novel Ni-Cr-W-based superalloy prepared by laser powder bed fusion. Addit. Manuf. 2023, 78, 103883.

122. Fu, W.; Sun, Y.; Fan, G.; et al. Strain delocalization in a gradient-structured high entropy alloy under uniaxial tensile loading. Int. J. Plasticity. 2023, 171, 103808.

123. Kim, R. E.; Gu, G. H.; Choi, Y. T.; Lee, J. A.; Kim, H. S. Superior tensile properties and formability synergy of high-entropy alloys through inverse-gradient structures via laser surface treatment. Scr. Mater. 2023, 234, 115587.

124. Jiao, M.; Lei, Z.; Wu, Y.; et al. Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys. Nat. Commun. 2023, 14, 806.

125. Ren, J.; Wu, M.; Li, C.; et al. Deformation mechanisms in an additively manufactured dual-phase eutectic high-entropy alloy. Acta. Mater. 2023, 257, 119179.

126. Zhang, W.; Chabok, A.; Wang, H.; et al. Ultra-strong and ductile precipitation-strengthened high entropy alloy with 0.5% Nb addition produced by laser additive manufacturing. J. Mater. Sci. Technol. 2024, 187, 195-211.

127. Singh, P.; Johnson, D. D.; Tiarks, J.; et al. Theory-guided design of duplex-phase multi-principal-element alloys. Acta. Mater. 2024, 272, 119952.

128. Li, X.; Lu, L.; Li, J.; Zhang, X.; Gao, H. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys. Nat. Rev. Mater. 2020, 5, 706-23.

129. Sathiyamoorthi, P.; Kim, H. S. High-entropy alloys with heterogeneous microstructure: processing and mechanical properties. Prog. Mater. Sci. 2022, 123, 100709.

130. Ma, E.; Zhu, T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today. 2017, 20, 323-31.

131. Hart, E. Theory of the tensile test. Acta. Metall. 1967, 15, 351-5.

132. Hutchinson, J.; Neale, K. Influence of strain-rate sensitivity on necking under uniaxial tension. Acta. Metall. 1977, 25, 839-46.

133. Peng, J.; Li, L.; Li, F.; et al. The predicted rate-dependent deformation behaviour and multistage strain hardening in a model heterostructured body-centered cubic high entropy alloy. Int. J. Plasticity. 2021, 145, 103073.

134. Yang, L.; Lu, L. The influence of sample thickness on the tensile properties of pure Cu with different grain sizes. Scr. Mater. 2013, 69, 242-5.

135. Jin, M.; Hosseini, E.; Holdsworth, S.; Pham, M. Thermally activated dependence of fatigue behaviour of CrMnFeCoNi high entropy alloy fabricated by laser powder-bed fusion. Addit. Manuf. 2022, 51, 102600.

136. Chen, Y.; Li, B.; Chen, B.; Xuan, F. High-cycle fatigue induced twinning in CoCrFeNi high-entropy alloy processed by laser powder bed fusion additive manufacturing. Addit. Manuf. 2023, 61, 103319.

137. Nagarjuna, C.; You, H.; Ahn, S.; et al. Worn surface and subsurface layer structure formation behavior on wear mechanism of CoCrFeMnNi high entropy alloy in different sliding conditions. App. Surf. Sci. 2021, 549, 149202.

138. Joseph, J.; Haghdadi, N.; Shamlaye, K.; Hodgson, P.; Barnett, M.; Fabijanic, D. The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear 2019, 428-9, 32-44.

139. Poulia, A.; Georgatis, E.; Lekatou, A.; Karantzalis, A. Dry-sliding wear response of MoTaWNbV high entropy alloy. Adv. Eng. Mater. 2017, 19, 1600535.

140. Sadeghilaridjani, M.; Pole, M.; Jha, S.; Muskeri, S.; Ghodki, N.; Mukherjee, S. Deformation and tribological behavior of ductile refractory high-entropy alloys. Wear 2021, 478-9, 203916.

141. Chen, L.; He, D.; Han, B.; et al. Effect of laser remelting on wear behavior of HVOF-sprayed FeCrCoNiTiAl0.6 high entropy alloy coating. Appl. Sci. 2020, 10, 7211.

142. Jin, B.; Zhang, N.; Yu, H.; Hao, D.; Ma, Y. AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance. Surf. Coat. Technol. 2020, 402, 126328.

143. Du, J.; Xu, X.; Zhang, H.; et al. Microstructure and wear resistance of CoCrFeNiMn coatings prepared by extreme-high-speed laser cladding. Surf. Coat. Technol. 2023, 470, 129821.

144. Li, Y.; Liang, H.; Nie, Q.; et al. Microstructures and wear resistance of CoCrFeNi2V0.5Tix high-entropy alloy coatings prepared by laser cladding. Crystals 2020, 10, 352.

145. Shi, F.; Zhang, Q.; Xu, C.; et al. In-situ synthesis of NiCoCrMnFe high entropy alloy coating by laser cladding. Opt. Laser. Technol. 2022, 151, 108020.

146. Peng, Y.; Zhang, W.; Li, T.; et al. Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding. Int. J. Refract. Metals. Hard. Mater. 2019, 84, 105044.

147. Liu, H.; Liu, J.; Li, X.; Chen, P.; Yang, H.; Hao, J. Effect of heat treatment on phase stability and wear behavior of laser clad AlCoCrFeNiTi0.8 high-entropy alloy coatings. Surf. Coat. Technol. 2020, 392, 125758.

148. Rui, H.; Meiping, W.; Chen, C.; Dadong, J.; Yuling, G.; Xiaojin, M. Microstructure evolution, mechanical properties of FeCrNiMnAl high entropy alloy coatings fabricated by laser cladding. Surf. Coat. Technol. 2022, 447, 128851.

149. Meyers, S.; Gurung, K.; Kinds, Y.; Hooreweder, B. V. On the use of slurry as an alternative to dry powder for laser powder bed fusion of 316L stainless steel. Addit. Manuf. Lett. 2024, 11, 100230.

150. Hu, X.; Guo, C.; Huang, Y.; et al. Liquid-induced healing of cracks in nickel-based superalloy fabricated by laser powder bed fusion. Acta. Mater. 2024, 267, 119731.

151. Yang, M.; Yan, D.; Yuan, F.; Jiang, P.; Ma, E.; Wu, X. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc. Natl. Acad. Sci. USA. 2018, 115, 7224-9.

152. Chen, X.; Wang, Q.; Cheng, Z.; et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature 2021, 592, 712-6.

153. Han, Y.; Chen, H.; Sun, Y.; et al. Ubiquitous short-range order in multi-principal element alloys. Nat. Commun. 2024, 15, 6486.

154. Karthik, G. M.; Kim, H. S. Heterogeneous aspects of additive manufactured metallic parts: a review. Met. Mater. Int. 2021, 27, 1-39.

155. Yang, Y.; Ragnvaldsen, O.; Bai, Y.; Yi, M.; Xu, B. 3D non-isothermal phase-field simulation of microstructure evolution during selective laser sintering. NPJ. Comput. Mater. 2019, 5, 219.

156. Qian, L.; Yang, W.; Luo, J.; Wang, Y.; Chan, K. C.; Yang, X. S. Amorphous thickness-dependent strengthening-softening transition in crystalline-amorphous nanocomposites. Nano. Lett. 2023, 23, 11288-96.

157. Qian, L.; Wu, B.; Fu, H.; et al. Atomistic simulations of the enhanced creep resistance and underlying mechanisms of nanograined-nanotwinned copper. Mater. Sci. Eng. A. 2022, 855, 143912.

158. Chen, X.; Liu, L.; Gao, R.; Lu, S.; Fu, T. Molecular dynamics simulation of the heterostructure of the CoCrFeMnNi high entropy alloy under an impact load. Model. Simul. Mater. Sci. Eng. 2023, 31, 085020.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/