REFERENCES

1. Shi, X. L.; Zou, J.; Chen, Z. G. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 2020, 120, 7399-515.

2. He, J.; Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 2017, 357, eaak9997.

3. Zhu, T.; Liu, Y.; Fu, C.; Heremans, J. P.; Snyder, J. G.; Zhao, X. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 2017, 29.

4. Wu, Y.; Nan, P.; Chen, Z.; et al. Thermoelectric enhancements in PbTe alloys due to dislocation-induced strains and converged bands. Adv. Sci. 2020, 7, 1902628.

5. Tan, G.; Zhao, L. D.; Kanatzidis, M. G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123-49.

6. Xiao, Y.; Xu, L.; Hong, T.; et al. Ultrahigh carrier mobility contributes to remarkably enhanced thermoelectric performance in n-type PbSe. Energy. Environ. Sci. 2022, 15, 346-55.

7. Li, J.; Zhang, X.; Chen, Z.; et al. Low-symmetry rhombohedral GeTe thermoelectrics. Joule 2018, 2, 976-87.

8. Li, M.; Sun, Q.; Xu, S. D.; et al. Optimizing electronic quality factor toward high-performance Ge1-x-yTaxSbyTe thermoelectrics: the role of transition metal doping. Adv. Mater. 2021, 33, e2102575.

9. Wang, M.; Hong, M.; Fang, X.; et al. Engineering the p-n switch: mastering intrinsic point defects in Sb2Te3-dominant alloys. Acta. Mater. 2024, 266, 119675.

10. Zhong, J.; Yang, X.; Lyu, T.; et al. Nuanced dilute doping strategy enables high-performance GeTe thermoelectrics. Sci. Bull. 2024, 69, 1037-49.

11. Zhou, Y.; Cheng, J.; Hong, M.; et al. Orchestrating phase transition in GeTe thermoelectrics: an investigation into the role of electronegativity. Nano. Energy. 2024, 127, 109723.

12. Yao, W.; Zhang, Y.; Lyu, T.; et al. Two-step phase manipulation by tailoring chemical bonds results in high-performance GeSe thermoelectrics. Innovation 2023, 4, 100522.

13. Huang, Y.; Lyu, T.; Zeng, M.; et al. Manipulation of metavalent bonding to stabilize metastable phase: a strategy for enhancing zT in GeSe. Interdiscip. Mater. 2024, 3, 607-20.

14. Hu, L.; Duan, B.; Lyu, T.; et al. In situ design of high-performance dual-phase GeSe thermoelectrics by tailoring chemical bonds. Adv. Funct. Mater. 2023, 33, 2214854.

15. Li, Y.; Liu, Y.; Wang, M.; et al. Leveraging crystal symmetry for thermoelectric performance optimization in cubic GeSe. Rare. Met. 2024, 43, 5332-45.

16. Pan, L.; Liu, W.; Zhang, J.; et al. Synergistic effect approaching record-high figure of merit in the shear exfoliated n-type Bi2O2-2xTe2xSe. Nano. Energy. 2020, 69, 104394.

17. Pei, Y. L.; Wu, H.; Wu, D.; Zheng, F.; He, J. High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. J. Am. Chem. Soc. 2014, 136, 13902-8.

18. Butt, S.; Xu, W.; Farooq, M. U.; et al. Enhancement of thermoelectric performance in hierarchical mesoscopic oxide composites of Ca3Co4O9 and La0.8Sr0.2CoO3. J. Am. Ceram. Soc. 2015, 98, 1230-5.

19. Wang, D.; Chen, L.; Yao, Q.; Li, J. High-temperature thermoelectric properties of Ca3Co4O9+δ with Eu substitution. Solid. State. Commun. 2004, 129, 615-8.

20. Wang, Y.; Sui, Y.; Fan, H.; et al. High temperature thermoelectric response of electron-doped CaMnO3. Chem. Mater. 2009, 21, 4653-60.

21. Lan, J.; Lin, Y.; Liu, Y.; Xu, S.; Nan, C.; Hopper, M. High thermoelectric performance of nanostructured In2O3‐based ceramics. J. Am. Ceram. Soc. 2012, 95, 2465-9.

22. Sun, J.; Singh, D. J. Thermoelectric properties of n-type SrTiO3. APL. Mater. 2016, 4, 104803.

23. Han, J.; Zeng, Y.; Song, Y.; Liu, H. Synthesis of SrTiO3 fibers and their effects on the thermoelectric properties of La0.1Dy0.1Sr0.75TiO3 ceramics. Electron. Mater. Lett. 2019, 15, 278-86.

24. Lin, J.; Hwang, C.; Sie, F. Preparation and thermoelectric properties of Nd and Dy co-doped SrTiO3 bulk materials. Mater. Res. Bull. 2020, 122, 110650.

25. Wang, J.; Zhang, B.; Kang, H.; et al. Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping. Nano. Energy. 2017, 35, 387-95.

26. Ohta, S.; Nomura, T.; Ohta, H.; Koumoto, K. High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 2005, 97, 034106.

27. Ohta, H.; Kim, S.; Mune, Y.; et al. Giant thermoelectric seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 2007, 6, 129-34.

28. Rahman, J. U.; Nam, W. H.; Van, D. N.; et al. Oxygen vacancy revived phonon-glass electron-crystal in SrTiO3. J. Eur. Ceram. Soc. 2019, 39, 358-65.

29. Du, Y.; Zhang, M.; Wu, J.; et al. Optical properties of SrTiO3 thin films by pulsed laser deposition. Appl. Phys. A. 2003, 76, 1105-8.

30. Zhu, Y.; Azough, F.; Liu, X.; et al. Precursor-led grain boundary engineering for superior thermoelectric performance in niobium strontium titanate. ACS. Appl. Mater. Interfaces. 2023, 15, 13097-107.

31. Zhang, B.; Wang, J.; Zou, T.; et al. High thermoelectric performance of Nb-doped SrTiO3 bulk materials with different doping levels. J. Mater. Chem. C. 2015, 3, 11406-11.

32. Zhang, P.; Gong, L.; Lou, Z.; et al. Reduced lattice thermal conductivity of perovskite-type high-entropy (Ca0.25Sr0.25Ba0.25RE0.25)TiO3 ceramics by phonon engineering for thermoelectric applications. J. Alloys. Compd. 2022, 898, 162858.

33. Mizoguchi, T.; Ohta, H.; Lee, H.; Takahashi, N.; Ikuhara, Y. Controlling interface intermixing and properties of SrTiO3-based superlattices. Adv. Funct. Mater. 2011, 21, 2258-63.

34. Wang, Q.; Safdar, M.; Wang, Z.; He, J. Low-dimensional Te-based nanostructures. Adv. Mater. 2013, 25, 3915-21.

35. Park, D.; Ju, H.; Kim, J. One-pot fabrication of Ag-SrTiO3 nanocomposite and its enhanced thermoelectric properties. Ceram. Int. 2019, 45, 16969-75.

36. Chen, Y.; Liu, J.; Li, Y.; et al. Enhancement of thermoelectric performance of Sr1-xTi0.8Nb0.2O3 ceramics by introducing Sr vacancies. J. Electron. Mater. 2019, 48, 1147-52.

37. Wang, Z.; Wang, Z.; Zhao, H.; et al. Behavior of boron and nitrogen impurities in diamonds synthesized at high pressure and high temperature. Int. J. Refract. Met. Hard. Mater. 2024, 125, 106902.

38. Zhao, B.; You, C.; Zhang, S.; et al. Constructing coherent/semi-coherent phase boundaries to enhance toughness of superhard cBN-B composite. IInt. J. Refract. Met. Hard. Mater. 2024, 123, 106785.

39. Xiao, G.; Cao, Y.; Qi, G.; et al. Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals. J. Am. Chem. Soc. 2017, 139, 10087-94.

40. Shang, Y.; Liu, Z.; Dong, J.; et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature 2021, 599, 599-604.

41. Lyu, T.; Yang, Q.; Li, Z.; et al. High pressure drives microstructure modification and zT enhancement in bismuth telluride-based alloys. ACS. Appl. Mater. Interfaces. 2023, 15, 19250-7.

42. Zhang, L.; Wang, Y.; Lv, J.; Ma, Y. Materials discovery at high pressures. Nat. Rev. Mater. 2017, 2, 1-16.

43. Ninet, S.; Datchi, F.; Dumas, P.; et al. Experimental and theoretical evidence for an ionic crystal of ammonia at high pressure. Phys. Rev. B. 2014, 89.

44. Morozova, N. V.; Korobeinikov, I. V.; Ovsyannikov, S. V. Strategies and challenges of high-pressure methods applied to thermoelectric materials. J. Appl. Phys. 2019, 125, 220901.

45. Escobedo, J.; Field, D.; Leblanc, M.; Florando, J.; Lassila, D. Influence of pressure on the microstructural evolution of Ta during shear deformation. Scripta. Mater. 2014, 80, 21-4.

46. Guo, X.; Dong, H.; Luo, Z.; Chen, B.; Li, X. High pressure suppressing grain boundary migration in a nanograined nickel. Scripta. Mater. 2022, 214, 114656.

47. Yin, Z.; Liu, Z.; Yu, Y.; et al. Synergistically optimized electron and phonon transport of polycrystalline BiCuSeO via Pb and Yb Co-doping. ACS. Appl. Mater. Interfaces. 2021, 13, 57638-45.

48. Liu, H.; Ma, H.; Su, T.; et al. High-thermoelectric performance of TiO2-x fabricated under high pressure at high temperatures. J. Materiomics. 2017, 3, 286-92.

49. Wang, D.; Gao, Y.; You, C.; et al. Enhancement of thermoelectric performance in robust ZnO‐based composite ceramics driven by a stepwise optimization strategy. Adv. Funct. Mater. 2024, 34, 2308970.

50. Zhang, P.; Lou, Z.; Hu, G.; et al. In-situ construction of all-scale hierarchical microstructure and thermoelectric properties of (Sr0.25Ca0.25Ba0.25La0.25)TiO3/Pb@Bi composite oxide ceramics. J. Materiomics. 2023, 9, 661-72.

51. Qin, M.; Lou, Z.; Zhang, P.; et al. Enhancement of thermoelectric performance of Sr0.9La0.1TiO3-based ceramics regulated by nanostructures. ACS. Appl. Mater. Interfaces. 2020, 12, 53899-909.

52. Qin, M.; Gao, F.; Wang, M.; Zhang, C.; Zhang, Q.; Wang, L. Fabrication and high-temperature thermoelectric properties of Ti-doped Sr0.9La0.1TiO3 ceramics. Ceram. Int. 2016, 42, 16644-9.

53. Koumoto, K.; Wang, Y.; Zhang, R.; Kosuga, A.; Funahashi, R. Oxide thermoelectric materials: a nanostructuring approach. Annu. Rev. Mater. Res. 2010, 40, 363-94.

54. Ovsyannikov, S. V.; Shchennikov, V. V. High-pressure routes in the thermoelectricity or how one can improve a performance of thermoelectrics. Chem. Mater. 2010, 22, 635-47.

55. Li, H.; Zhu, X.; Zhang, Y.; et al. Thermal conductivity and mechanical properties of as-cast and as-extruded Mg-Zn-Mn alloys. Mat. Res. 2019, 22, e20190430.

56. Rodrigues, J. E. F. S.; Gainza, J.; Serrano-Sánchez, F.; et al. Unveiling the structural behavior under pressure of filled M0.5Co4Sb12 (M = K, Sr, La, Ce, and Yb) thermoelectric skutterudites. Inorg. Chem. 2021, 60, 7413-21.

57. Bueno, V. R.; Zavanelli, D.; Jung, C.; et al. Grain boundary phases in NbFeSb half‐heusler alloys: a new avenue to tune transport properties of thermoelectric materials. Adv. Energy. Mater. 2023, 13, 2204321.

58. Hammons, J. A.; Espitia, J. A.; Ramos, E.; et al. Pore and grain chemistry during sintering of garnet-type Li6.4La3Zr1.4Ta0.6O12 solid-state electrolytes. J. Mater. Chem. A. 2022, 10, 9080-90.

59. Guan, S.; Lin, W.; Liang, H.; et al. The effect of pressure tuning on the structure and mechanical properties of high-entropy carbides. Scripta. Mater. 2022, 216, 114755.

60. Hu, C.; Xia, K.; Fu, C.; Zhao, X.; Zhu, T. Carrier grain boundary scattering in thermoelectric materials. Energy. Environ. Sci. 2022, 15, 1406-22.

61. Qin, X.; Liu, X.; Huang, W.; Bettinelli, M.; Liu, X. Lanthanide-activated phosphors based on 4f-5d optical transitions: theoretical and experimental aspects. Chem. Rev. 2017, 117, 4488-527.

62. Liang, G.; Lyu, T.; Hu, L.; et al. (GeTe)1-x(AgSnSe2)x: strong atomic disorder-induced high thermoelectric performance near the ioffe-regel limit. ACS. Appl. Mater. Interfaces. 2021, 13, 47081-9.

63. Zhong, J.; Liang, G.; Cheng, J.; et al. Entropy engineering enhances the thermoelectric performance and microhardness of (GeTe)1-x(AgSb0.5Bi0.5Te2)x. Sci. China. Mater. 2023, 66, 696-706.

64. Zhang, X.; Pei, Y. Manipulation of charge transport in thermoelectrics. npj. Quant. Mater. 2017, 2, 71.

65. Li, J.; Zhang, X.; Lin, S.; Chen, Z.; Pei, Y. Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying. Chem. Mater. 2017, 29, 605-11.

66. Tritt, T. M.; Subramanian, M. A. Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS. Bull. 2006, 31, 188-98.

67. Snyder, G. J.; Snyder, A. H.; Wood, M.; Gurunathan, R.; Snyder, B. H.; Niu, C. Weighted mobility. Adv. Mater. 2020, 32, e2001537.

68. Liu, Y.; Zhao, L. D.; Liu, Y.; et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J. Am. Chem. Soc. 2011, 133, 20112-5.

69. Liu, Y.; Lin, Y.; Shi, Z.; Nan, C.; Shen, Z. Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by spark plasma sintering. J. Am. Ceram. Soc. 2005, 88, 1337-40.

70. Zhang, P.; Lou, Z.; Qin, M.; et al. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with a-site short-range disorder for thermoelectric applications. J. Mater. Sci. Technol. 2022, 97, 182-9.

71. Feng, X.; Fan, Y.; Nomura, N.; et al. Graphene promoted oxygen vacancies in perovskite for enhanced thermoelectric properties. Carbon 2017, 112, 169-76.

72. Banerjee, R.; Chatterjee, S.; Ranjan, M.; et al. High-entropy perovskites: an emergent class of oxide thermoelectrics with ultralow thermal conductivity. ACS. Sustainable. Chem. Eng. 2020, 8, 17022-32.

73. Li, Y.; Yamamoto, S.; Ahmad, K.; Almutairi, Z.; Koumoto, K.; Wan, C. Localized vibration and avoided crossing in SrTi11O20 for oxide thermoelectrics with intrinsically low thermal conductivity. J. Mater. Chem. A. 2021, 9, 11674-82.

74. Chen, C.; Bousnina, M.; Giovannelli, F.; Delorme, F. Influence of Bi on the thermoelectric properties of SrTiO3-δ. J. Materiomics. 2019, 5, 88-93.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/