REFERENCES

1. National Renewable Energy Laboratory. Best research-cell efficiency chart. Available from: https://www.nrel.gov/pv/cell-efficiency.html [Last accessed on 23 Dec 2024].

2. Chen, P.; Bai, Y.; Wang, S.; Lyu, M.; Yun, J. H.; Wang, L. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1706923.

3. Choi, E.; Zhang, Y.; Soufiani, A. M.; et al. Exploration of sub-bandgap states in 2D halide perovskite single-crystal photodetector. NPJ. 2D. Mater. Appl. 2022, 6, 317.

4. Ma, C.; Gao, L.; Xu, Z.; et al. Centimeter-sized 2D perovskitoid single crystals for efficient X-ray photoresponsivity. Chem. Mater. 2022, 34, 1699-709.

5. Zhang, L.; Sun, C.; He, T.; et al. High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light. Sci. Appl. 2021, 10, 61.

6. Hailegnaw, B.; Demchyshyn, S.; Putz, C.; et al. Flexible quasi-2D perovskite solar cells with high specific power and improved stability for energy-autonomous drones. Nat. Energy. 2024, 9, 677-90.

7. Wu, G.; Liang, R.; Ge, M.; Sun, G.; Zhang, Y.; Xing, G. Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv. Mater. 2022, 34, e2105635.

8. Leung, T. L.; Ahmad, I.; Syed, A. A.; Ng, A. M. C.; Popović, J.; Djurišić, A. B. Stability of 2D and quasi-2D perovskite materials and devices. Commun. Mater. 2022, 3, 285.

9. Zheng, H.; Liu, G.; Zhu, L.; et al. The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv. Energy. Mater. 2018, 8, 1800051.

10. Sheng, X.; Li, Y.; Xia, M.; Shi, E. Quasi-2D halide perovskite crystals and their optoelectronic applications. J. Mater. Chem. A. 2022, 10, 19169-83.

11. Sun, S.; Lu, M.; Gao, X.; et al. 0D perovskites: unique properties, synthesis, and their applications. Adv. Sci. 2021, 8, e2102689.

12. Lin, H.; Zhou, C.; Tian, Y.; Siegrist, T.; Ma, B. Low-dimensional organometal halide perovskites. ACS. Energy. Lett. 2018, 3, 54-62.

13. Kieslich, G.; Sun, S.; Cheetham, A. K. Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem. Sci. 2014, 5, 4712-5.

14. Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 2016, 7, 4548-56.

15. Mao, L.; Stoumpos, C. C.; Kanatzidis, M. G. Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 2019, 141, 1171-90.

16. Keldysh, L. Excitons in semiconductor-dielectric nanostructures. Phys. Status. Solidi. A. 1997, 1, 3-12.

17. Keldysh, L. V. Coulomb interaction in thin semiconductor and semimetal films; 2023. pp. 155-8.

18. Rytova, N. S. Screened potential of a point charge in a thin film. Moscow University Physics Bulletin; 1967.

19. Chakraborty, R.; Nag, A. Dielectric confinement for designing compositions and optoelectronic properties of 2D layered hybrid perovskites. Phys. Chem. Chem. Phys. 2021, 23, 82-93.

20. Pedesseau, L.; Sapori, D.; Traore, B.; et al. Advances and promises of layered halide hybrid perovskite semiconductors. ACS. Nano. 2016, 10, 9776-86.

21. Qian, J.; Xu, B.; Tian, W. A comprehensive theoretical study of halide perovskites ABX3. Org. Electron. 2016, 37, 61-73.

22. Wu, G.; Liang, R.; Zhang, Z.; Ge, M.; Xing, G.; Sun, G. 2D hybrid halide perovskites: structure, properties, and applications in solar cells. Small 2021, 17, e2103514.

23. Soe, C. M. M.; Stoumpos, C. C.; Kepenekian, M.; et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 2017, 139, 16297-309.

24. Shen, Y.; Liu, Y.; Ye, H.; et al. Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-Ray detection. Angew. Chem. Int. Ed. 2020, 59, 14896-902.

25. Zhang, B.; Zheng, T.; You, J.; et al. Electron-phonon coupling suppression by enhanced lattice rigidity in 2D perovskite single crystals for high-performance X-Ray detection. Adv. Mater. 2023, 35, e2208875.

26. Fu, D.; Hou, Z.; He, Y.; et al. Formamidinium perovskitizers and aromatic spacers synergistically building bilayer Dion-Jacobson perovskite photoelectric bulk crystals. ACS. Appl. Mater. Interfaces. 2022, 14, 11690-8.

27. Li, Y.; Lai, Z.; Meng, Y.; et al. High-performance photodetectors based on two-dimensional perovskite crystals with alternating interlayer cations. J. Materiomics. 2023, 9, 817-23.

28. Mao, L.; Ke, W.; Pedesseau, L.; et al. Hybrid Dion-Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 2018, 140, 3775-83.

29. Peng, W.; Yin, J.; Ho, K. T.; et al. Ultralow Self-doping in two-dimensional hybrid perovskite single crystals. Nano. Lett. 2017, 17, 4759-67.

30. Qian, C. X.; Wang, M. Z.; Lu, S. S.; Feng, H. J. Fabrication of 2D perovskite (PMA)2PbI4 crystal and Cu ion implantation improved X-ray detector. Appl. Phys. Lett. 2022, 120, 011901.

31. Wang, H.; Wang, Q.; Ning, M.; et al. Synthesis of centimeter-size two-dimensional hybrid perovskite single crystals with tunable, pure, and stable luminescence. RSC. Adv. 2023, 13, 22886-94.

32. He, X.; Wang, Y.; Li, K.; et al. Oriented growth of ultrathin single crystals of 2D Ruddlesden-Popper hybrid lead iodide perovskites for high-performance photodetectors. ACS. Appl. Mater. Interfaces. 2019, 11, 15905-12.

33. Lédée, F.; Trippé-Allard, G.; Diab, H.; et al. Fast growth of monocrystalline thin films of 2D layered hybrid perovskite. CrystEngComm 2017, 19, 2598-602.

34. Yan, W.; Duan, B.; Song, Y.; et al. Self-absorption and investigation of excited carrier dynamics in two-dimensional perovskite scintillator. Appl. Phys. Lett. 2024, 124, 053101.

35. Tian, H.; Zhao, L.; Wang, X.; et al. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS. Nano. 2017, 11, 12247-56.

36. Zhang, D.; Wei, X.; Wang, F.; Tang, H.; Deng, W.; Liu, J. Biphasic interfacial swimming top-down growth of Ruddlesden-Popper halide perovskite single-crystal sheets with few defects. Adv. Opt. Mater. 2024, 12, 2400617.

37. Xiao, X.; Dai, J.; Fang, Y.; et al. Suppressed ion migration along the in-plane direction in layered perovskites. ACS. Energy. Lett. 2018, 3, 684-8.

38. Dong, K.; Yang, X.; Yao, F.; et al. Spacer conformation induced multiple hydrogen bonds in 2D perovskite toward highly efficient optoelectronic devices. Adv. Mater. 2024, 36, e2313889.

39. Hong, E.; Li, Z.; Yan, T.; Fang, X. Surface-tension-dominant crystallization of 2D perovskite single crystals for vertically oriented hetero-/homo-structure photodetectors. Nano. Lett. 2022, 22, 8662-9.

40. Cinquino, M.; Fieramosca, A.; Mastria, R.; et al. Managing growth and dimensionality of quasi 2D perovskite single-crystalline flakes for tunable excitons orientation. Adv. Mater. 2021, 33, e2102326.

41. Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; et al. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 2016, 28, 2852-67.

42. Cinquino, M.; Polimeno, L.; Lerario, G.; et al. One-step synthesis at room temperature of low dimensional perovskite single crystals with high optical quality. J. Lumin. 2020, 221, 117079.

43. Paritmongkol, W.; Dahod, N. S.; Stollmann, A.; et al. Synthetic variation and structural trends in layered two-dimensional alkylammonium lead halide perovskites. Chem. Mater. 2019, 31, 5592-607.

44. Soe, C. M. M.; Nagabhushana, G. P.; Shivaramaiah, R.; et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl. Acad. Sci. USA. 2019, 116, 58-66.

45. Raghavan, C. M.; Chen, T. P.; Li, S. S.; et al. Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden-Popper perovskite single crystals. Nano. Lett. 2018, 18, 3221-8.

46. Fateev, S. A.; Petrov, A. A.; Ordinartsev, A. A.; Grishko, A. Y.; Goodilin, E. A.; Tarasov, A. B. Universal strategy of 3D and 2D hybrid perovskites single crystal growth via in situ solvent conversion. Chem. Mater. 2020, 32, 9805-12.

47. Liu, Y.; Ye, H.; Zhang, Y.; et al. Surface-Tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection. Matter 2019, 1, 465-80.

48. Rahil, M.; Ansari, R. M.; Prakash, C.; Islam, S. S.; Dixit, A.; Ahmad, S. Ruddlesden-Popper 2D perovskites of type (C6H9C2H4NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1-4) for optoelectronic applications. Sci. Rep. 2022, 12, 2176.

49. Gao, L.; Li, X.; Traoré, B.; et al. m-Phenylenediammonium as a new spacer for Dion-Jacobson two-dimensional perovskites. J. Am. Chem. Soc. 2021, 143, 12063-73.

50. Zheng, Y.; Niu, T.; Qiu, J.; et al. Oriented and uniform distribution of Dion-Jacobson phase perovskites controlled by quantum well barrier thickness. Solar. RRL. 2019, 3, 1900090.

51. Blancon, J. C.; Tsai, H.; Nie, W.; et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355, 1288-92.

52. Gan, L.; Li, J.; Fang, Z.; He, H.; Ye, Z. Effects of organic cation length on exciton recombination in two-dimensional layered lead iodide hybrid perovskite crystals. J. Phys. Chem. Lett. 2017, 8, 5177-83.

53. Huang, P.; Kazim, S.; Wang, M.; Ahmad, S. Toward phase stability: Dion-Jacobson layered perovskite for solar cells. ACS. Energy. Lett. 2019, 4, 2960-74.

54. Ghosh, D.; Acharya, D.; Pedesseau, L.; et al. Charge carrier dynamics in two-dimensional hybrid perovskites: Dion-Jacobson vs. Ruddlesden-Popper phases. J. Mater. Chem. A. 2020, 8, 22009-22.

55. Vasileiadou, E. S.; Wang, B.; Spanopoulos, I.; Hadar, I.; Navrotsky, A.; Kanatzidis, M. G. Insight on the stability of thick layers in 2D Ruddlesden-Popper and Dion-Jacobson lead iodide perovskites. J. Am. Chem. Soc. 2021, 143, 2523-36.

56. Li, W.; Feng, X.; Guo, K.; et al. Prominent free charges tunneling through organic interlayer of 2D perovskites. Adv. Mater. 2023, 35, e2211808.

57. Traore, B.; Pedesseau, L.; Assam, L.; et al. Composite nature of layered hybrid perovskites: assessment on quantum and dielectric confinements and band alignment. ACS. Nano. 2018, 12, 3321-32.

58. Kepenekian, M.; Traore, B.; Blancon, J. C.; et al. Concept of lattice mismatch and emergence of surface states in two-dimensional hybrid perovskite quantum wells. Nano. Lett. 2018, 18, 5603-9.

59. Li, F.; Zhang, J.; Jo, S.; et al. Vertical orientated Dion-Jacobson Quasi-2D perovskite film with improved photovoltaic performance and stability. Small. Methods. 2020, 4, 1900831.

60. Ghosh, S.; Pradhan, B.; Zhang, Y.; et al. Investigation of many-body exciton recombination and optical anisotropy in two-dimensional perovskites having different layers with alternating cations in the interlayer space. J. Phys. Chem. C. 2021, 125, 7799-807.

61. Li, P.; Liang, C.; Liu, X. L.; et al. Low-dimensional perovskites with diammonium and monoammonium alternant cations for high-performance photovoltaics. Adv. Mater. 2019, 31, e1901966.

62. Stoumpos, C. C.; Mao, L.; Malliakas, C. D.; Kanatzidis, M. G. Structure-band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites. Inorg. Chem. 2017, 56, 56-73.

63. Gao, L.; Luo, X.; Sun, J. L.; Li, Q.; Yan, Q. Room-temperature solvent evaporation induced crystallization: a general strategy for growth of halide perovskite single crystals by applying the Le Chatelier's Principle. Small 2023, 19, e2303687.

64. Shi, D.; Adinolfi, V.; Comin, R.; et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519-22.

65. Cheng, Z.; Liu, K.; Yang, J.; et al. High-performance planar-type ultraviolet photodetector based on high-quality CH3NH3PbCl3 perovskite single crystals. ACS. Appl. Mater. Interfaces. 2019, 11, 34144-50.

66. Liu, Y.; Zhang, Y.; Yang, Z.; et al. Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors. Mater. Today. 2019, 22, 67-75.

67. Zhang, Y.; Liu, Y.; Yang, Z.; Liu, S. F. High-quality perovskite MAPbI3 single crystals for broad-spectrum and rapid response integrate photodetector. J. Energy. Chem. 2018, 27, 722-7.

68. Muljarov, E. A.; Tikhodeev, S. G.; Gippius, N. A.; Ishihara, T. Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds. Phys. Rev. B. Condens. Matter. 1995, 51, 14370-8.

69. Tu, Y.; Xu, Y.; Li, J.; et al. Ultrathin single-crystalline 2D perovskite photoconductor for high-performance narrowband and wide linear dynamic range photodetection. Small 2020, 16, e2005626.

70. Liu, Y.; Zhang, Y.; Yang, Z.; et al. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nat. Commun. 2018, 9, 5302.

71. Li, J.; Wang, J.; Ma, J.; et al. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nat. Commun. 2019, 10, 806.

72. Xiang, M.; Dai, S.; Li, S.; et al. Comparative analysis of different ammonium-based cations in 2D DJ-type perovskite single crystals for high-performance planar photodetectors. J. Phys. Chem. C. 2024, 128, 2928-36.

73. Zhang, Y.; Liu, Y.; Xu, Z.; Yang, Z.; Liu, S. F. 2D perovskite single crystals with suppressed ion migration for high-performance planar-type photodetectors. Small 2020, 16, e2003145.

74. Meloni, S.; Moehl, T.; Tress, W.; et al. Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 2016, 7, 10334.

75. Lin, Y.; Bai, Y.; Fang, Y.; Wang, Q.; Deng, Y.; Huang, J. Suppressed ion migration in low-dimensional perovskites. ACS. Energy. Lett. 2017, 2, 1571-2.

76. Xu, X.; Wu, Y.; Zhang, Y.; et al. Two-dimensional perovskite single crystals for high-performance X-ray imaging and exploring MeV X-ray detection. Energy. Environ. Mater. 2024, 7, e12487.

77. Ghosh J, Afroz MA, Alghamdi S, Sellin PJ, Satapathi S. Efficient and highly stable X-ray detection and imaging using 2D (BA)2PbI4 perovskite single crystals. ACS. Photonics. 2022, 9, 3529-39.

78. Huang, Y.; Qiao, L.; Jiang, Y.; et al. A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector. Angew. Chem. Int. Ed. 2019, 58, 17834-42.

79. Gangadharan D, Ma D. Searching for stability at lower dimensions: current trends and future prospects of layered perovskite solar cells. Energy. Environ. Sci. 2019, 12, 2860-89.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/