REFERENCES
1. Ringe, S.; Clark, E. L.; Resasco, J.; et al. Understanding cation effects in electrochemical CO2 reduction. Energy. Environ. Sci. 2019, 12, 3001-14.
2. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.
3. Yang, D.; Zhu, Q.; Sun, X.; et al. Nanoporous Cu/Ni oxide composites: efficient catalysts for electrochemical reduction of CO2 in aqueous electrolytes. Green. Chem. 2018, 20, 3705-10.
4. Lu, L.; Zhong, H.; Wang, T.; Wu, J.; Jin, F.; Yoshioka, T. A new strategy for CO2 utilization with waste plastics: conversion of hydrogen carbonate into formate using polyvinyl chloride in water. Green. Chem. 2020, 22, 352-8.
5. Sun, H.; Xu, X.; Yan, Z.; et al. Superhydrophilic amorphous Co-B-P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A. 2018, 6, 22062-9.
6. Wang, Y.; Han, P.; Lv, X.; Zhang, L.; Zheng, G. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2018, 2, 2551-82.
7. Zhang, H.; Wang, J.; Zhao, Z.; et al. The synthesis of atomic Fe embedded in bamboo-CNTs grown on graphene as a superior CO2 electrocatalyst. Green. Chem. 2018, 20, 3521-9.
8. Liu, M.; Pang, Y.; Zhang, B.; et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382-6.
9. Xie, H.; Wang, T.; Liang, J.; Li, Q.; Sun, S. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano. Today. 2018, 21, 41-54.
10. Woldu, A. R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord. Chem. Rev. 2022, 454, 214340.
11. Ren, D.; Ang, B. S.; Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS. Catal. 2016, 6, 8239-47.
12. Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy. Environ. Sci. 2012, 5, 7050.
13. Iijima, G.; Inomata, T.; Yamaguchi, H.; Ito, M.; Masuda, H. Role of a hydroxide layer on Cu electrodes in electrochemical CO2 reduction. ACS. Catal. 2019, 9, 6305-19.
14. Carroll T, Yang X, Gordon KJ, Fei L, Wu G. Ethylene electrosynthesis via selective CO2 reduction: fundamental considerations, strategies, and challenges. Adv. Energy. Mater. 2024, 14, 2401558.
15. Qin, Q.; Suo, H.; Chen, L.; et al. Emerging Cu-based tandem catalytic systems for CO2 electroreduction to multi-carbon products. Adv. Mater. Interfaces. 2024, 11, 2301049.
16. Zheng, W.; Yang, X.; Li, Z.; et al. Designs of tandem catalysts and cascade catalytic systems for CO2 upgrading. Angew. Chem. Int. Ed. 2023, 62, e202307283.
17. Chen, H.; Mo, P.; Zhu, J.; et al. Anionic coordination control in building Cu-based electrocatalytic materials for CO2 reduction reaction. Small 2024, 20, e2400661.
18. Machado AS, Nunes da Ponte M. CO2 capture and electrochemical conversion. Curr. Opin. Green. Sustain. Chem. 2018, 11, 86-90.
19. Li, L.; Li, X.; Sun, Y.; Xie, Y. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev. 2022, 51, 1234-52.
20. Hori, Y.; Kikuchi, K.; Suzuki, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 1985, 14, 1695-8.
21. Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B. 1997, 101, 7075-81.
22. Murata, A.; Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn. 1991, 64, 123-7.
23. Kortlever, R.; Shen, J.; Schouten, K. J.; Calle-Vallejo, F.; Koper, M. T. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073-82.
24. Zhang, L.; Zhao, Z. J.; Gong, J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem. Int. Ed. 2017, 56, 11326-53.
25. Jones, J.; Prakash, G. K. S.; Olah, G. A. Electrochemical CO2 reduction: recent advances and current trends. Isr. J. Chem. 2014, 54, 1451-66.
26. Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 2009, 38, 89-99.
27. Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure. J. Am. Chem. Soc. 1987, 109, 5022-3.
28. Handoko, A. D.; Wei, F.; Jenndy; Yeo, B. S.; Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 2018, 1, 922-34.
29. Li, C.; Ji, Y.; Wang, Y.; et al. Applications of metal-organic frameworks and their derivatives in electrochemical CO2 reduction. Nanomicro. Lett. 2023, 15, 113.
30. Wang, K.; Liu, D.; Liu, L.; et al. Tuning the local electronic structure of oxygen vacancies over copper-doped zinc oxide for efficient CO2 electroreduction. eScience 2022, 2, 518-28.
31. Albo, J.; Vallejo, D.; Beobide, G.; Castillo, O.; Castaño, P.; Irabien, A. Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. ChemSusChem 2017, 10, 1100-9.
32. Merino-garcia, I.; Albo, J.; Solla-gullón, J.; Montiel, V.; Irabien, A. Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion. J. CO2. Util. 2019, 31, 135-42.
33. Nitopi, S.; Bertheussen, E.; Scott, S. B.; et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610-72.
34. Christensen, O.; Zhao, S.; Sun, Z.; et al. Can the CO2 reduction reaction be improved on Cu: selectivity and intrinsic activity of functionalized Cu surfaces. ACS. Catal. 2022, 12, 15737-49.
35. Tomboc, G. M.; Choi, S.; Kwon, T.; Hwang, Y. J.; Lee, K. Potential link between Cu surface and selective CO2 electroreduction: perspective on future electrocatalyst designs. Adv. Mater. 2020, 32, e1908398.
36. Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta. 1994, 39, 1833-9.
37. Lum, Y.; Cheng, T.; Goddard, W. A. I. I. I.; Ager, J. W. Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 2018, 140, 9337-40.
38. Feaster, J. T.; Shi, C.; Cave, E. R.; et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS. Catal. 2017, 7, 4822-7.
39. Göttle, A. J.; Koper, M. T. M. Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT. Chem. Sci. 2017, 8, 458-65.
40. Han, J.; Bai, X.; Xu, X.; et al. Advances and challenges in the electrochemical reduction of carbon dioxide. Chem. Sci. 2024, 15, 7870-907.
41. Li, Y. C.; Wang, Z.; Yuan, T.; et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 2019, 141, 8584-91.
42. Farrell, A. E.; Plevin, R. J.; Turner, B. T.; Jones, A. D.; O'Hare, M.; Kammen, D. M. Ethanol can contribute to energy and environmental goals. Science 2006, 311, 506-8.
43. Ren, D.; Deng, Y.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS. Catal. 2015, 5, 2814-21.
44. Yang, H.; Li, S.; Xu, Q. Efficient strategies for promoting the electrochemical reduction of CO2 to C2+ products over Cu-based catalysts. Chin. J. Catal. 2023, 48, 32-65.
45. Wang, Y.; Shen, H.; Livi, K. J. T.; et al. Copper nanocubes for CO2 reduction in gas diffusion electrodes. Nano. Lett. 2019, 19, 8461-8.
46. Song, Y.; Peng, R.; Hensley, D. K.; et al. High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode. ChemistrySelect 2016, 1, 6055-61.
47. Birdja, Y. Y.; Pérez-gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy. 2019, 4, 732-45.
48. Roberts, F. S.; Kuhl, K. P.; Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 2015, 54, 5179-82.
49. Jiang, K.; Sandberg, R. B.; Akey, A. J.; et al. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction. Nat. Catal. 2018, 1, 111-9.
50. Feijóo, J.; Yang, Y.; Fonseca, G. M. V.; et al. Operando high-energy-resolution X-ray spectroscopy of evolving Cu nanoparticle electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2023, 145, 20208-13.
51. Yin, Z.; Yu, C.; Zhao, Z.; et al. Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene. Nano. Lett. 2019, 19, 8658-63.
52. Zhou, L.; Li, C.; Lv, J.; et al. Synergistic regulation of hydrophobicity and basicity for copper hydroxide‐derived copper to promote the CO2 electroreduction reaction. Carbon. Energy. 2023, 5, e328.
53. Su, Y.; Cheng, Y.; Li, Z.; et al. Exploring the impact of nafion modifier on electrocatalytic CO2 reduction over Cu catalyst. J. Energy. Chem. 2024, 88, 543-51.
54. Pellessier, J.; Gong, X.; Li, B.; et al. PTFE nanocoating on Cu nanoparticles through dry processing to enhance electrochemical conversion of CO2 towards multi-carbon products. J. Mater. Chem. A. 2023, 11, 26252-64.
55. Lin, Y.; Wang, T.; Zhang, L.; et al. Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability. Nat. Commun. 2023, 14, 3575.
56. Rabiee, H.; Ge, L.; Zhao, J.; et al. Regulating the reaction zone of electrochemical CO2 reduction on gas-diffusion electrodes by distinctive hydrophilic-hydrophobic catalyst layers. Appl. Catal. B:. Environ. 2022, 310, 121362.
57. Zhang, Y.; Zhang, R.; Chen, F.; et al. Mass-transfer-enhanced hydrophobic Bi microsheets for highly efficient electroreduction of CO2 to pure formate in a wide potential window. Appl. Catal. B:. Environ. 2023, 322, 122127.
58. Zhao, T.; Zong, X.; Liu, J.; et al. Functionalizing Cu nanoparticles with fluoric polymer to enhance C2+ product selectivity in membraned CO2 reduction. Appl. Catal. B:. Environ. 2024, 340, 123281.
59. Reske, R.; Mistry, H.; Behafarid, F.; Roldan, C. B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978-86.
60. Manthiram, K.; Beberwyck, B. J.; Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 2014, 136, 13319-25.
61. Jung, H.; Lee, S. Y.; Lee, C. W.; et al. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 4624-33.
62. Yang, Y.; Louisia, S.; Yu, S.; et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 2023, 614, 262-9.
63. Zhang, J.; My, P. T. H.; Gao, Z.; et al. Electrochemical CO2 reduction over copper phthalocyanine derived catalysts with enhanced selectivity for multicarbon products. ACS. Catal. 2023, 13, 9326-35.
64. Zi, X.; Zhou, Y.; Zhu, L.; et al. Breaking K+ concentration limit on Cu nanoneedles for acidic electrocatalytic CO2 reduction to multi-carbon products. Angew. Chem. Int. Ed. 2023, 62, e202309351.
65. Fu, W.; Liu, Z.; Wang, T.; et al. Promoting C2+ production from electrochemical CO2 reduction on shape-controlled cuprous oxide nanocrystals with high-index facets. ACS. Sustain. Chem. Eng. 2020, 8, 15223-9.
66. Luo, H.; Li, B.; Ma, J. G.; Cheng, P. Surface modification of nano-Cu2O for controlling CO2 electrochemical reduction to ethylene and syngas. Angew. Chem. Int. Ed. 2022, 61, e202116736.
67. Periasamy, A. P.; Ravindranath, R.; Senthil, K. S. M.; Wu, W. P.; Jian, T. R.; Chang, H. T. Facet- and structure-dependent catalytic activity of cuprous oxide/polypyrrole particles towards the efficient reduction of carbon dioxide to methanol. Nanoscale 2018, 10, 11869-80.
68. Wu, Q.; Du, R.; Wang, P.; et al. Nanograin-boundary-abundant C2O-Cu nanocubes with high C2+ selectivity and good stability during electrochemical CO2 reduction at a current density of 500 mA/cm2. ACS. Nano. 2023, 17, 12884-94.
69. Geng, Q.; Fan, L.; Chen, H.; et al. Revolutionizing CO2 electrolysis: fluent gas transportation within hydrophobic porous Cu2O. J. Am. Chem. Soc. 2024, 146, 10599-607.
70. Frese, K. W. Electrochemical reduction of CO2 at solid electrodes. In: Sullivan BP, Krist K, Guard HE, editors. Electrochemical and electrocatalytic reactions of carbon dioxide.Amsterdam: Elsevier; 1993.pp.145-216.
71. Hori, Y.; Takahashi, I.; Koga, O.; Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A:. Chem. 2003, 199, 39-47.
72. Schouten, K. J.; Qin, Z.; Pérez, G. E.; Koper, M. T. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 2012, 134, 9864-7.
73. Gao, Y.; Wu, Q.; Liang, X.; et al. Cu2O nanoparticles with both {100} and {111} facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene. Adv. Sci. 2020, 7, 1902820.
74. Wu, Z. Z.; Zhang, X. L.; Niu, Z. Z.; et al. Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 2022, 144, 259-69.
75. Ma, Z.; Tsounis, C.; Toe, C. Y.; et al. Reconstructing Cu nanoparticle supported on vertical graphene surfaces via electrochemical treatment to tune the selectivity of CO2 reduction toward valuable products. ACS. Catal. 2022, 12, 4792-805.
76. Chen, S.; Ye, C.; Wang, Z.; et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts. Angew. Chem. Int. Ed. 2023, 62, e202315621.
77. Liu, B.; Cai, C.; Yang, B.; et al. Intermediate enrichment effect of porous Cu catalyst for CO2 electroreduction to C2 fuels. Electrochim. Acta. 2021, 388, 138552.
78. Zhang, J.; Zeng, G.; Zhu, S.; et al. Steering CO2 electroreduction pathway toward ethanol via surface-bounded hydroxyl species-induced noncovalent interaction. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2218987120.
79. Liu, C.; Zhang, M.; Li, J.; et al. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling. Angew. Chem. Int. Ed. 2022, 61, e202113498.
80. Yang, P. P.; Zhang, X. L.; Gao, F. Y.; et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 2020, 142, 6400-8.
81. Chen, X.; Chen, J.; Alghoraibi, N. M.; et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 2021, 4, 20-7.
82. Wakerley, D.; Lamaison, S.; Ozanam, F.; et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222-7.
83. Qu, Y.; Li, Z.; Chen, W.; et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781-6.
84. Lang, R.; Du, X.; Huang, Y.; et al. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986-2043.
85. Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900-55.
86. Zhao, Z.; Lu, G. Cu-based single-atom catalysts boost electroreduction of CO2 to CH3OH: first-principles predictions. J. Phys. Chem. C. 2019, 123, 4380-7.
87. Cai, Y.; Fu, J.; Zhou, Y.; et al. Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 2021, 12, 586.
88. Li, Z.; Qiu, S.; Song, Y.; et al. Engineering single-atom active sites anchored covalent organic frameworks for efficient metallaphotoredox CN cross-coupling reactions. Sci. Bull. 2022, 67, 1971-81.
89. Li, X.; Yu, X.; Yu, Q. Research progress on electrochemical CO2 reduction for Cu-based single-atom catalysts. Sci. China. Mater. 2023, 66, 3765-81.
90. Li, X.; Rong, H.; Zhang, J.; Wang, D.; Li, Y. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano. Res. 2020, 13, 1842-55.
91. Zhu, Y.; Sokolowski, J.; Song, X.; He, Y.; Mei, Y.; Wu, G. Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion. Adv. Energy. Mater. 2020, 10, 1902844.
92. Dong, J.; Liu, Y.; Pei, J.; et al. Continuous electroproduction of formate via CO2 reduction on local symmetry-broken single-atom catalysts. Nat. Commun. 2023, 14, 6849.
93. Wang, X.; Ju, W.; Liang, L.; et al. Electrochemical CO2 activation and valorization on metallic copper and carbon-embedded N-coordinated single metal MNC catalysts. Angew. Chem. Int. Ed. 2024, 63, e202401821.
94. Han, L.; Song, S.; Liu, M.; et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563-7.
95. Zhao, J.; Chen, Z.; Zhao, J. Metal-free graphdiyne doped with sp-hybridized boron and nitrogen atoms at acetylenic sites for high-efficiency electroreduction of CO2 to CH4 and C2H4. J. Mater. Chem. A. 2019, 7, 4026-35.
96. He, F.; Zhuang, J.; Lu, B.; et al. Ni-based catalysts derived from Ni-Zr-Al ternary hydrotalcites show outstanding catalytic properties for low-temperature CO2 methanation. Appl. Catal. B:. Environ. 2021, 293, 120218.
97. Liu, X.; Wang, Z.; Tian, Y.; Zhao, J. Graphdiyne-supported single iron atom: a promising electrocatalyst for carbon dioxide electroreduction into methane and ethanol. J. Phys. Chem. C. 2020, 124, 3722-30.
98. Zhao, P.; Jiang, H.; Shen, H.; et al. Construction of low-coordination Cu-C2 single-atoms electrocatalyst facilitating the efficient electrochemical CO2 reduction to methane. Angew. Chem. Int. Ed. 2023, 62, e202314121.
99. Shi, G.; Xie, Y.; Du, L.; et al. Constructing Cu-C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4. Angew. Chem. Int. Ed. 2022, 61, e202203569.
100. Li, M.; Zhang, F.; Kuang, M.; et al. Atomic Cu sites engineering enables efficient CO2 electroreduction to methane with high CH4/C2H4 ratio. Nanomicro. Lett. 2023, 15, 238.
101. Chen, S.; Li, Y.; Bu, Z.; et al. Boosting CO2-to-CO conversion on a robust single-atom copper decorated carbon catalyst by enhancing intermediate binding strength. J. Mater. Chem. A. 2021, 9, 1705-12.
102. Chen, S.; Xia, M.; Zhang, X.; et al. Guanosine-derived atomically dispersed Cu-N3-C sites for efficient electroreduction of carbon dioxide. J. Colloid. Interface. Sci. 2023, 646, 863-71.
103. Purbia, R.; Choi, S. Y.; Woo, C. H.; et al. Highly selective and low-overpotential electrocatalytic CO2 reduction to ethanol by Cu-single atoms decorated N-doped carbon dots. Appl. Catal. B:. Environ. 2024, 345, 123694.
104. Pan, F.; Fang, L.; Li, B.; et al. N and OH-immobilized Cu3 clusters in situ reconstructed from single-metal sites for efficient CO2 electromethanation in bicontinuous mesochannels. J. Am. Chem. Soc. 2024, 146, 1423-34.
105. Xia, W.; Xie, Y.; Jia, S.; et al. Adjacent copper single atoms promote C-C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol. J. Am. Chem. Soc. 2023, 145, 17253-64.
106. Xu, C.; Zhi, X.; Vasileff, A.; et al. Highly selective two-electron electrocatalytic CO2 reduction on single-atom Cu catalysts. Small. Struct. 2021, 2, 2000058.
107. Cheng, H.; Wu, X.; Li, X.; et al. Construction of atomically dispersed Cu-N4 sites via engineered coordination environment for high-efficient CO2 electroreduction. Chem. Eng. J. 2021, 407, 126842.
108. Karapinar, D.; Huan, N. T.; Ranjbar, S. N.; et al. Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 2019, 58, 15098-103.
109. Zhao, K.; Nie, X.; Wang, H.; et al. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 2020, 11, 2455.
110. Roy, S.; Li, Z.; Chen, Z.; et al. Cooperative copper single-atom catalyst in 2D carbon nitride for enhanced CO2 electrolysis to methane. Adv. Mater. 2024, 36, e2300713.
111. Wu, Q. J.; Si, D. H.; Sun, P. P.; et al. Atomically precise copper nanoclusters for highly efficient electroreduction of CO2 towards hydrocarbons via breaking the coordination symmetry of Cu site. Angew. Chem. Int. Ed. 2023, 62, e202306822.
112. Lv, Z.; Wang, C.; Liu, Y.; et al. Improving CO2-to-C2 conversion of atomic CuFONC electrocatalysts through F, O-codrived optimization of local coordination environment. Adv. Energy. Mater. 2024, 14, 2400057.
113. Chen, C.; Li, Y.; Yu, S.; et al. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 2020, 4, 1688-99.
114. Shen, S.; Peng, X.; Song, L.; et al. AuCu alloy nanoparticle embedded Cu submicrocone arrays for selective conversion of CO2 to ethanol. Small 2019, 15, e1902229.
115. Cao, B.; Li, F.; Gu, J. Designing Cu-based tandem catalysts for CO2 electroreduction based on mass transport of CO intermediate. ACS. Catal. 2022, 12, 9735-52.
116. Ji, Y.; Guan, A.; Zheng, G. Copper-based catalysts for electrochemical carbon monoxide reduction. Cell. Rep. Phys. Sci. 2022, 3, 101072.
117. Luc, W.; Collins, C.; Wang, S.; et al. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J. Am. Chem. Soc. 2017, 139, 1885-93.
118. Ross, M. B.; Dinh, C. T.; Li, Y.; et al. Tunable Cu enrichment enables designer syngas electrosynthesis from CO2. J. Am. Chem. Soc. 2017, 139, 9359-63.
119. Peng, L.; Wang, Y.; Wang, Y.; et al. Separated growth of Bi-Cu bimetallic electrocatalysts on defective copper foam for highly converting CO2 to formate with alkaline anion-exchange membrane beyond KHCO3 electrolyte. Appl. Catal. B:. Environ. 2021, 288, 120003.
120. Hou, C.; Wang, H.; Li, C.; Xu, Q. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy. Environ. Sci. 2020, 13, 1658-93.
121. Xu, Y.; Li, C.; Xiao, Y.; et al. Tuning the selectivity of liquid products of CO2RR by Cu-Ag alloying. ACS. Appl. Mater. Interfaces. 2022, 14, 11567-74.
122. Yang, Z.; Wang, H.; Fei, X.; et al. MOF derived bimetallic CuBi catalysts with ultra-wide potential window for high-efficient electrochemical reduction of CO2 to formate. Appl. Catal. B:. Environ. 2021, 298, 120571.
123. Hoang, T. T. H.; Verma, S.; Ma, S.; et al. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 2018, 140, 5791-7.
124. Ouyang, Y.; Shi, L.; Bai, X.; Ling, C.; Li, Q.; Wang, J. Selectivity of electrochemical CO2 reduction toward ethanol and ethylene: the key role of surface-active hydrogen. ACS. Catal. 2023, 13, 15448-56.
125. Morales-guio, C. G.; Cave, E. R.; Nitopi, S. A.; et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764-71.
126. Wei, Z.; Yue, S.; Gao, S.; Cao, M.; Cao, R. Synergetic effects of gold-doped copper nanowires with low Au content for enhanced electrocatalytic CO2 reduction to multicarbon products. Nano. Res. 2023, 16, 7777-83.
127. Zheng, Y.; Zhang, J.; Ma, Z.; et al. Seeded growth of gold-copper janus nanostructures as a tandem catalyst for efficient electroreduction of CO2 to C2+ products. Small 2022, 18, e2201695.
128. Ma, Y.; Yu, J.; Sun, M.; et al. Confined growth of silver-copper janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater. 2022, 34, e2110607.
129. Wei, C.; Yang, Y.; Ma, H.; et al. Nanoscale management of CO transport in CO2 electroreduction: boosting faradaic efficiency to multicarbon products via nanostructured tandem electrocatalysts. Adv. Funct. Mater. 2023, 33, 2214992.
130. Choi, C.; Cai, J.; Lee, C.; Lee, H. M.; Xu, M.; Huang, Y. Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano. Res. 2021, 14, 3497-501.
131. Li, P.; Bi, J.; Liu, J.; et al. In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts. Nat. Commun. 2022, 13, 1965.
132. Du, C.; Mills, J. P.; Yohannes, A. G.; et al. Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products. Nat. Commun. 2023, 14, 6142.
133. Qi, K.; Zhang, Y.; Onofrio, N.; et al. Unlocking direct CO2 electrolysis to C3 products via electrolyte supersaturation. Nat. Catal. 2023, 6, 319-31.
134. Li, J.; Chen, Y.; Yao, B.; et al. Cascade dual sites modulate local CO coverage and hydrogen-binding strength to boost CO2 electroreduction to ethylene. J. Am. Chem. Soc. 2024, 146, 5693-701.
135. Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296-99.
136. Zhu, J.; Ciolca, D.; Liu, L.; Parastaev, A.; Kosinov, N.; Hensen, E. J. M. Flame synthesis of Cu/ZnO-CeO2 catalysts: synergistic metal-support interactions promote CH3OH selectivity in CO2 hydrogenation. ACS. Catal. 2021, 11, 4880-92.
137. Amann, P.; Klötzer, B.; Degerman, D.; et al. The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst. Science 2022, 376, 603-8.
138. Wan, L.; Zhang, X.; Cheng, J.; et al. Bimetallic Cu-Zn catalysts for electrochemical CO2 reduction: phase-separated versus core-shell distribution. ACS. Catal. 2022, 12, 2741-8.
139. Zhen, S.; Zhang, G.; Cheng, D.; et al. Nature of the active sites of copper zinc catalysts for carbon dioxide electroreduction. Angew. Chem. Int. Ed. 2022, 61, e202201913.
140. Zhang, Z.; Tian, H.; Bian, L.; Liu, S.; Liu, Y.; Wang, Z. Cu-Zn-based alloy/oxide interfaces for enhanced electroreduction of CO2 to C2+ products. J. Energy. Chem. 2023, 83, 90-7.
141. Liu, M.; Wang, Q.; Luo, T.; et al. Potential alignment in tandem catalysts enhances CO2-to-C2H4 conversion efficiencies. J. Am. Chem. Soc. 2024, 146, 468-75.
142. Song, J.; Zhang, H.; Sun, R.; et al. Local CO generator enabled by a CO-producing core for kinetically enhancing electrochemical CO2 reduction to multicarbon products. ACS. Nano. 2024, 18, 11416-24.
143. Wei, B.; Xiong, Y.; Zhang, Z.; Hao, J.; Li, L.; Shi, W. Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet. Appl. Catal. B:. Environ. 2021, 283, 119646.
144. Wang, Z.; Li, Z.; Liu, S.; et al. Enhancing the selectivity of CO2-to-HCOOH conversion by constructing tensile-strained Cu catalyst. Mater. Today. Phys. 2023, 38, 101247.
145. Li, X.; Qin, M.; Wu, X.; et al. Enhanced CO affinity on Cu facilitates CO2 electroreduction toward multi-carbon products. Small 2023, 19, e2302530.
146. Zheng, T.; Liu, C.; Guo, C.; et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 2021, 16, 1386-93.
147. Cao, Y.; Chen, S.; Bo, S.; et al. Single atom Bi decorated copper alloy enables C-C coupling for electrocatalytic reduction of CO2 into C2+ products. Angew. Chem. Int. Ed. 2023, 62, e202303048.
148. Hu, S.; Chen, Y.; Zhang, Z.; et al. Ampere-level current density CO2 reduction with high C2+ selectivity on La(OH)3-modified Cu catalysts. Small 2024, 20, e2308226.
149. Li, P.; Bi, J.; Liu, J.; et al. p-d orbital hybridization induced by p-block metal-doped Cu promotes the formation of C2+ products in ampere-level CO2 electroreduction. J. Am. Chem. Soc. 2023, 145, 4675-82.
150. Xie, M.; Shen, Y.; Ma, W.; et al. Fast screening for copper-based bimetallic electrocatalysts: efficient electrocatalytic reduction of CO2 to C2+ products on magnesium-modified copper. Angew. Chem. Int. Ed. 2022, 61, e202213423.
151. Hao, J.; Zhu, H.; Li, Y.; et al. Tuning the electronic structure of AuNi homogeneous solid-solution alloy with positively charged Ni center for highly selective electrochemical CO2 reduction. Chem. Eng. J. 2021, 404, 126523.
152. Liu, A.; Yang, Y.; Ren, X.; et al. Current progress of electrocatalysts for ammonia synthesis through electrochemical nitrogen reduction under ambient conditions. ChemSusChem 2020, 13, 3766-88.
153. Xu, H.; Rebollar, D.; He, H.; et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy. 2020, 5, 623-32.
154. Pan, F.; Yang, X.; O'carroll, T.; Li, H.; Chen, K.; Wu, G. Carbon catalysts for electrochemical CO2 reduction toward multicarbon products. Adv. Energy. Mater. 2022, 12, 2200586.
155. Yan, Y.; Ke, L.; Ding, Y.; et al. Recent advances in Cu-based catalysts for electroreduction of carbon dioxide. Mater. Chem. Front. 2021, 5, 2668-83.
156. Su, X.; Wang, C.; Zhao, F.; Wei, T.; Zhao, D.; Zhang, J. Size effects of supported Cu-based catalysts for the electrocatalytic CO2 reduction reaction. J. Mater. Chem. A. 2023, 11, 23188-210.
157. Yang, H.; Wu, Y.; Li, G.; et al. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 2019, 141, 12717-23.
158. Wu, Y.; Jiang, Z.; Lu, X.; Liang, Y.; Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 2019, 575, 639-42.
159. Zheng, W.; Yang, J.; Chen, H.; et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.
160. Feng, Z.; Tang, Y.; Ma, Y.; et al. Theoretical investigation of CO2 electroreduction on N (B)-doped graphdiyne mononlayer supported single copper atom. Appl. Surf. Sci. 2021, 538, 148145.
161. Xu, F.; Feng, B.; Shen, Z.; et al. Oxygen-bridged Cu binuclear sites for efficient electrocatalytic CO2 reduction to ethanol at ultralow overpotential. J. Am. Chem. Soc. 2024, 146, 9365-74.
162. Jiao, Y.; Zheng, Y.; Chen, P.; Jaroniec, M.; Qiao, S. Z. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 2017, 139, 18093-100.
163. Li, H.; Cao, S.; Sun, H.; et al. CuNCN derived Cu-based/CxNy catalysts for highly selective CO2 electroreduction to hydrocarbons. Appl. Catal. B:. Environ. 2023, 320, 121948.
164. Li, Q.; Zhu, W.; Fu, J.; Zhang, H.; Wu, G.; Sun, S. Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano. Energy. 2016, 24, 1-9.
166. Chen, S.; Abdel-Mageed, A. M.; Dyballa, M.; et al. Raising the COx methanation activity of a Ru/γ-Al2O3 catalyst by activated modification of metal-support interactions. Angew. Chem. Int. Ed. 2020, 59, 22763-70.
167. Chen, J.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. Selective reduction of CO2 to CH4 by tandem hydrosilylation with mixed Al/B catalysts. J. Am. Chem. Soc. 2016, 138, 5321-33.
168. Sampson, M. D.; Kubiak, C. P. Manganese electrocatalysts with bulky bipyridine ligands: utilizing lewis acids to promote carbon dioxide reduction at low overpotentials. J. Am. Chem. Soc. 2016, 138, 1386-93.
169. Kim, Y. E.; Kim, J.; Lee, Y. Formation of a nickel carbon dioxide adduct and its transformation mediated by a lewis acid. Chem. Commun. 2014, 50, 11458-61.
170. Chen, S.; Wang, B.; Zhu, J.; et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation. Nano. Lett. 2021, 21, 7325-31.
171. Yuan, J.; Zhang, J.; Yang, M.; Meng, W.; Wang, H.; Lu, J. CuO nanoparticles supported on TiO2 with high efficiency for CO2 electrochemical reduction to ethanol. Catalysts 2018, 8, 171.
172. Chu, D.; Qin, G.; Yuan, X.; Xu, M.; Zheng, P.; Lu, J. Fixation of CO2 by electrocatalytic reduction and electropolymerization in ionic liquid-H2O solution. ChemSusChem 2008, 1, 205-9.
173. Thompson, T. L.; Diwald, O.; Yates, J. T. CO2 as a probe for monitoring the surface defects on TiO2(110)-temperature-programmed desorption. J. Phys. Chem. B. 2003, 107, 11700-4.
174. Cueto, L. F.; Hirata, G. A.; Sánchez, E. M. Thin-film TiO2 electrode surface characterization upon CO2 reduction processes. J. Sol-Gel. Sci. Technol. 2006, 37, 105-9.
175. Abdinejad, M.; Subramanian, S.; Motlagh, M. K.; et al. Insertion of MXene-based materials into Cu-Pd 3D aerogels for electroreduction of CO2 to formate. Adv. Energy. Mater. 2023, 13, 2300402.
176. Lin, L.; Liu, T.; Xiao, J.; et al. Enhancing CO2 electroreduction to methane with a cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst. Angew. Chem. Int. Ed. 2020, 59, 22408-13.