REFERENCES

1. Zhou, A.; Wang, D.; Li, Y. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microstructures 2022, 2, 2022005.

2. Kendall, M. Fuel cell development for new energy vehicles (NEVs) and clean air in China. Prog. Nat. Sci. Mater. Int. 2018, 28, 113-20.

3. Tarhan, C.; Çil, M. A. A study on hydrogen, the clean energy of the future: hydrogen storage methods. J. Energy. Storage. 2021, 40, 102676.

4. Zhao, Y.; Adiyeri, S. D. P.; Huang, C.; et al. Oxygen evolution/reduction reaction catalysts: from in situ monitoring and reaction mechanisms to rational design. Chem. Rev. 2023, 123, 6257-358.

5. Wu, K.; Lyu, C.; Cheng, J.; et al. Defect engineering in transition-metal (Fe, Co, and Ni)-based electrocatalysts for water splitting. Carbon. Energy. 2024, 6, e485.

6. Verma, J.; Goel, S. Cost-effective electrocatalysts for hydrogen evolution reactions (HER): challenges and prospects. Int. J. Hydrogen. Energy. 2022, 47, 38964-82.

7. Jin, S.; Hao, Z.; Zhang, K.; Yan, Z.; Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew. Chem. Int. Ed. 2021, 133, 20795-816.

8. Qing, G.; Ghazfar, R.; Jackowski, S. T.; et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437-516.

9. Zhang, Y.; Lin, Y.; Duan, T.; Song, L. Interfacial engineering of heterogeneous catalysts for electrocatalysis. Mater. Today. 2021, 48, 115-34.

10. Long, X.; Li, Z.; Gao, G.; et al. Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations. Nat. Commun. 2020, 11, 4074.

11. Wu, T.; Han, M. Y.; Xu, Z. J. Size effects of electrocatalysts: more than a variation of surface area. ACS. Nano. 2022, 16, 8531-9.

12. Wang, H.; Lu, J. A review on particle size effect in metal-catalyzed heterogeneous reactions. Chin. J. Chem. 2020, 38, 1422-44.

13. Yu, X.; Li, G.; Tao, S.; et al. Single-atom Fe catalyst for catalytic ethane dehydrogenation to ethylene. ChemCatChem 2023, 15, e202201612.

14. Tong, M.; Sun, F.; Xing, G.; Tian, C.; Wang, L.; Fu, H. Potential dominates structural recombination of single atom Mn sites for promoting oxygen reduction reaction. Angew. Chem. Int. Ed. 2023, 62, e202314933.

15. Jia, C.; Li, S.; Zhao, Y.; et al. Nitrogen vacancy induced coordinative reconstruction of single-atom Ni catalyst for efficient electrochemical CO2 reduction. Adv. Funct. Materials. 2021, 31, 2107072.

16. Xu, H.; Cheng, D.; Cao, D.; Zeng, X. C. Revisiting the universal principle for the rational design of single-atom electrocatalysts. Nat. Catal. 2024, 7, 207-18.

17. Wu, X.; Zhang, H.; Zuo, S.; et al. Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nanomicro. Lett. 2021, 13, 136.

18. Liu, H.; Tian, L.; Zhang, Z.; et al. Atomic-level asymmetric tuning of the Co1-N3P1 catalyst for highly efficient N-alkylation of amines with alcohols. J. Am. Chem. Soc. 2024, 146, 20518-29.

19. Deng, Z.; Liu, Y.; Lin, J.; Chen, W. Rational design and energy catalytic application of high-loading single-atom catalysts. Rare. Met. 2024, 43, 4844-66.

20. Guo, W.; Wang, Z.; Wang, X.; Wu, Y. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 2021, 33, e2004287.

21. Liang, J.; Lin, J.; Yang, X.; et al. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOx for CO oxidation. J. Phys. Chem. C. 2014, 118, 21945-51.

22. Tian, J.; Zhu, Y.; Yao, X.; et al. Chemical vapor deposition towards atomically dispersed iron catalysts for efficient oxygen reduction. J. Mater. Chem. A. 2023, 11, 5288-95.

23. Yan, H.; Zhang, N.; Wang, D. Highly efficient CeO2-supported noble-metal catalysts: from single atoms to nanoclusters. Chem. Catalysis. 2022, 2, 1594-623.

24. Park, S. J.; Nguyen, T. H.; Tran, D. T.; Dinh, V. A.; Lee, J. H.; Kim, N. H. Delaminated MBene sheets beyond usual 2D transition metal materials for securing Pt single atoms to boost hydrogen evolution. Energy. Environ. Sci. 2023, 16, 4093-104.

25. Tan, H.; Wang, J.; Lin, S.; Kuo, T.; Chen, H. M. Dynamic coordination structure evolutions of atomically dispersed metal catalysts for electrocatalytic reactions. Adv. Mater. Inter. 2023, 10, 2202050.

26. Liu, Y.; Zhuang, Z.; Liu, Y.; et al. Shear-strained Pd single-atom electrocatalysts for nitrate reduction to ammonia. Angew. Chem. Int. Ed. 2024, 63, e202411396.

27. Zhu, Y.; Wang, J.; Koketsu, T.; et al. Author correction: iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions. Nat. Commun. 2024, 15, 1395.

28. Mochizuki, C.; Inomata, Y.; Yasumura, S.; et al. Defective NiO as a stabilizer for Au single-atom catalysts. ACS. Catal. 2022, 12, 6149-58.

29. Shah, K.; Dai, R.; Mateen, M.; et al. Cobalt single atom incorporated in ruthenium oxide sphere: a robust bifunctional electrocatalyst for HER and OER. Angew. Chem. 2022, 61, e202114951.

30. Wang, Y.; Shi, R.; Shang, L.; et al. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem. Int. Ed. 2020, 59, 13057-62.

31. Mosrati, J.; Abdel-mageed, A. M.; Vuong, T. H.; et al. Tiny species with big impact: high activity of Cu single atoms on CeO2-TiO2 deciphered by operando spectroscopy. ACS. Catal. 2021, 11, 10933-49.

32. Wu, Y.; Zhao, Y.; Zhai, P.; et al. Triggering lattice oxygen activation of single-atomic Mo sites anchored on Ni-Fe oxyhydroxides nanoarrays for electrochemical water oxidation. Adv. Mater. 2022, 34, e2202523.

33. Zheng, Y.; Li, S.; Huang, N.; Li, X.; Xu, Q. Recent advances in metal-organic framework-derived materials for electrocatalytic and photocatalytic CO2 reduction. Coord. Chem. Rev. 2024, 510, 215858.

34. Gloag, L.; Somerville, S. V.; Gooding, J. J.; Tilley, R. D. Co-catalytic metal-support interactions in single-atom electrocatalysts. Nat. Rev. Mater. 2024, 9, 173-89.

35. Chen, Z.; Li, X.; Zhao, J.; et al. Stabilizing Pt single atoms through Pt-Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 2023, 62, e202308686.

36. Jia, C.; Zhao, Y.; Song, S.; et al. Highly ordered hierarchical porous single-atom Fe catalyst with promoted mass transfer for efficient electroreduction of CO2. Adv. Energy. Mater. 2023, 13, 2302007.

37. Liu, J.; Cao, C.; Liu, X.; et al. Direct observation of metal oxide nanoparticles being transformed into metal single atoms with oxygen-coordinated structure and high-loadings. Angew. Chem. Int. Ed. 2021, 60, 15248-53.

38. Zhou, Y.; Song, E.; Chen, W.; et al. Dual-metal interbonding as the chemical facilitator for single-atom dispersions. Adv. Mater. 2020, 32, e2003484.

39. Wang, M.; Yang, W.; Li, X.; et al. Atomically dispersed Fe-heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction. ACS. Energy. Lett. 2021, 6, 379-86.

40. Hao, Y.; Hung, S. F.; Zeng, W. J.; et al. Switching the oxygen evolution mechanism on atomically dispersed Ru for enhanced acidic reaction kinetics. J. Am. Chem. Soc. 2023, 145, 23659-69.

41. Zhao, L.; Bian, J.; Zhang, X.; et al. Construction of ultrathin s-scheme heterojunctions of single Ni atom immobilized Ti-MOF and BiVO4 for CO2 photoconversion of nearly 100% to CO by pure water. Adv. Mater. 2022, 34, e2205303.

42. Cheng, Y.; Peng, J.; Lai, G.; et al. Edge-site Co-Nx model single-atom catalysts for CO2 electroreduction. ACS. Catal. 2024, 14, 8446-55.

43. Li, Y.; Lu, X. F.; Xi, S.; Luan, D.; Wang, X.; Lou, X. W. D. Synthesis of N-doped highly graphitic carbon urchin-like hollow structures loaded with single-Ni atoms towards efficient CO2 electroreduction. Angew. Chem. Int. Ed. 2022, 61, e202201491.

44. Li, B. Q.; Zhao, C. X.; Chen, S.; et al. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries. Adv. Mater. 2019, 31, e1900592.

45. Li, Q.; Chen, W.; Xiao, H.; et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, e1800588.

46. Lim, J. W.; Choo, D. H.; Cho, J. H.; et al. A MOF-derived pyrrolic N-stabilized Ni single atom catalyst for selective electrochemical reduction of CO2 to CO at high current density. J. Mater. Chem. A. 2024, 12, 11090-100.

47. Yang, H.; Zhang, P.; Yi, X.; et al. Constructing highly utilizable Fe-N4 single-atom sites by one-step gradient pyrolysis for electroreduction of O2 and CO2. Chem. Eng. J. 2022, 440, 135749.

48. Pan, Y.; Chen, Y.; Wu, K.; et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019, 10, 4290.

49. Koshy, D. M.; Chen, S.; Lee, D. U.; et al. Understanding the origin of highly selective CO2 electroreduction to CO on Ni,N-doped carbon catalysts. Angew. Chem. Int. Ed. 2020, 59, 4043-50.

50. Lei, J.; Liu, H.; Yin, D.; et al. Boosting the loading of metal single atoms via a bioconcentration strategy. Small 2020, 16, e1905920.

51. Wei, S.; Yang, R.; Zhang, Q. Isolated iron single-atom sites for oxygen reduction derived from a porphyrin-based carbon sphere by a polymerization-coordination-pyrolysis strategy. J. Mater. Chem. A. 2023, 11, 16314-20.

52. Wang, J.; Huang, Y.; Wang, Y.; et al. Atomically dispersed metal-nitrogen-carbon catalysts with d-orbital electronic configuration-dependent selectivity for electrochemical CO2-to-CO reduction. ACS. Catal. 2023, 13, 2374-85.

53. Noh, W. Y.; Mun, J.; Lee, Y.; et al. Molecularly engineered carbon platform to anchor edge-hosted single-atomic M-N/C (M = Fe, Co, Ni, Cu) electrocatalysts of outstanding durability. ACS. Catal. 2022, 12, 7994-8006.

54. Xu, H.; Zhang, S.; Zhang, X.; et al. Atomically dispersed iron regulating electronic structure of iron atom clusters for electrocatalytic H2O2 Production and biomass upgrading. Angew. Chem. Int. Ed. 2023, 62, e202314414.

55. Shi, B.; Li, H.; Fu, X.; et al. Fe Single-atom catalyst for cost-effective yet highly efficient heterogeneous fenton catalysis. ACS. Appl. Mater. Interfaces. 2022, 14, 53767-76.

56. Tan, H.; Tang, J.; Henzie, J.; et al. Assembly of hollow carbon nanospheres on graphene nanosheets and greation of iron-nitrogen-doped porous carbon for oxygen reduction. ACS. Nano. 2018, 12, 5674-83.

57. Min, S.; Wang, Z.; Xu, X.; et al. Transition metal (Fe, Co, Ni)-doped cuprous oxide nanowire arrays as self-supporting catalysts for electrocatalytic CO2 reduction reaction to ethylene. Appl. Surf. Sci. 2024, 663, 160150.

58. Wang, J.; Li, B.; Li, Y.; et al. Facile synthesis of atomic Fe-N-C materials and dual roles investigation of Fe-N4 sites in fenton-like reactions. Adv. Sci. 2021, 8, e2101824.

59. Yin, S.; Yang, S.; Li, G.; et al. Seizing gaseous Fe2+ to densify O2-accessible Fe-N4 sites for high-performance proton exchange membrane fuel cells. Energy. Environ. Sci. 2022, 15, 3033-40.

60. Yuan, S.; Zhang, J.; Hu, L.; et al. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem. Int. Ed. 2021, 60, 21685-90.

61. Zhao, Y.; Lu, X. F.; Fan, G.; Luan, D.; Gu, X.; Lou, X. W. D. Surface-exposed single-Ni atoms with potential-driven dynamic behaviors for highly efficient electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 2022, 61, e202212542.

62. Wang, C.; Tissot, H.; Soldemo, M.; Lu, J.; Weissenrieder, J. Inverse single-site Fe1(OH)x/Pt(111) model catalyst for preferential oxidation of CO in H2. Nano. Res. 2022, 15, 709-15.

63. Chaipornchalerm, P.; Nunthakitgoson, W.; Mano, P.; et al. Rational design of Fe single sites supported on hierarchical zeolites via atomic layer deposition for few-walled carbon nanotube production. ACS. Appl. Mater. Interfaces. 2024, 16, 33590-600.

64. Zhang, L.; Wang, Q.; Li, L.; et al. Single atom surface engineering: a new strategy to boost electrochemical activities of Pt catalysts. Nano. Energy. 2022, 93, 106813.

65. Cao, Y.; Chen, S.; Luo, Q.; et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew. Chem. Int. Ed. 2017, 56, 12191-6.

66. Wang, X.; Sun, L.; Zhou, W.; et al. Iron single-atom catalysts confined in covalent organic frameworks for efficient oxygen evolution reaction. Cell. Rep. Phys. Sci. 2022, 3, 100804.

67. Wang, X.; Jin, B.; Jin, Y.; Wu, T.; Ma, L.; Liang, X. Supported single Fe atoms prepared via atomic layer deposition for catalytic reactions. ACS. Appl. Nano. Mater. 2020, 3, 2867-74.

68. Yan, H.; Zhao, X.; Guo, N.; et al. Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nat. Commun. 2018, 9, 3197.

69. Bu, F.; Chen, C.; Yu, Y.; et al. Boosting benzene oxidation with a spin-state-controlled nuclearity effect on iron sub-nanocatalysts. Angew. Chem. 2023, 62, e202216062.

70. Jin, T.; Liu, X.; Gao, Q.; et al. Pyrolysis-free, facile mechanochemical strategy toward cobalt single-atom/nitrogen-doped carbon for highly efficient water splitting. Chem. Eng. J. 2022, 433, 134089.

71. Zhao, X.; Zheng, X.; Lu, Q.; et al. Electrocatalytic enhancement mechanism of cobalt single atoms anchored on different MXene substrates in oxygen and hydrogen evolution reactions. EcoMat 2023, 5, e12293.

72. Yang, H.; Lin, Q.; Zhang, C.; et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 2020, 11, 593.

73. Gong, F.; Liu, Y.; Zhao, Y.; et al. Back cover: universal sub-nanoreactor strategy for synthesis of yolk-shell MoS2 supported single atom electrocatalysts toward robust hydrogen evolution reaction. Angew. Chem. Int. Ed. 2023, 62, e202308091.

74. Liu, J. C.; Wang, Y. G.; Li, J. Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria. J. Am. Chem. Soc. 2017, 139, 6190-9.

75. Lin, L.; Zhou, W.; Gao, R.; et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80-3.

76. Zhao, Y.; Guo, Y.; Lu, X. F.; Luan, D.; Gu, X.; Lou, X. W. D. Exposing single Ni atoms in hollow S/N-doped carbon macroporous fibers for highly efficient electrochemical oxygen evolution. Adv. Mater. 2022, 34, e2203442.

77. Kumar, P.; Kannimuthu, K.; Zeraati, A. S.; et al. High-density cobalt single-atom catalysts for enhanced oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 8052-63.

78. Hou, M.; Zheng, L.; Zhao, D.; et al. Microenvironment reconstitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting. Nat. Commun. 2024, 15, 1342.

79. Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212-3.

80. Lin, Y.; Liu, P.; Velasco, E.; et al. Fabricating single-atom catalysts from chelating metal in open frameworks. Adv. Mater. 2019, 31, e1808193.

81. Han, Y.; Wang, Y. G.; Chen, W.; et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2017, 139, 17269-72.

82. Jiang, H.; Xia, J.; Jiao, L.; et al. Ni single atoms anchored on N-doped carbon nanosheets as bifunctional electrocatalysts for urea-assisted rechargeable Zn-air batteries. Appl. Catal. B:. Environ. 2022, 310, 121352.

83. Wroblowa, H. S.; Yen-chi-pan; Razumney, G. Electroreduction of oxygen: a new mechanistic criterion. J. Electroanal. Chem. Interfacial. Electrochem. 1976, 69, 195-201.

84. Ye, C.; Xu, L. Recent advances in the design of a high performance metal-nitrogen-carbon catalyst for the oxygen reduction reaction. J. Mater. Chem. A. 2021, 9, 22218-47.

85. Kang, Z.; Wang, X.; Wang, D.; et al. Carbon-based single-atom catalysts: impacts of atomic coordination on the oxygen reduction reaction. Nanoscale 2023, 15, 9605-34.

86. Jun S, Choi S, Kim J, Kwon KC, Park SH, Jang HW. Non-noble metal single atom catalysts for electrochemical energy conversion reactions. Chinese. J. Catal. 2023, 50, 195-214.

87. Liang, Z.; Zheng, H.; Cao, R. Recent advances in Co-based electrocatalysts for the oxygen reduction reaction. Sustain. Energy. Fuels. 2020, 4, 3848-70.

88. Garba, M. D.; Usman, M.; Khan, S.; et al. CO2 towards fuels: a review of catalytic conversion of carbon dioxide to hydrocarbons. J. Environ. Chem. Eng. 2021, 9, 104756.

89. Goyal, N.; Li, F.; Hu, Y. Tailoring single-metal atom catalysts: a strategic defect engineering approach for electrochemical reduction reactions. J. Mater. Chem. A. 2024, 12, 19685-719.

90. Tang, T.; Wang, Z.; Guan, J. Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M-N-C materials. Adv. Funct. Mater. 2022, 32, 2111504.

91. Pei, J.; Shang, H.; Mao, J.; et al. A replacement strategy for regulating local environment of single-atom Co-SxN4-x catalysts to facilitate CO2 electroreduction. Nat. Commun. 2024, 15, 416.

92. Chen, S.; Li, X.; Kao, C. W.; et al. Unveiling the proton-feeding effect in sulfur-doped Fe-N-C single-atom catalyst for enhanced CO2 electroreduction. Angew. Chem. Int. Ed. 2022, 61, e202206233.

93. Wen, M.; Sun, N.; Jiao, L.; Zang, S. Q.; Jiang, H. L. Microwave-assisted rapid synthesis of MOF-based single-atom Ni catalyst for CO2 electroreduction at ampere-level current. Angew. Chem. 2024, 63, e202318338.

94. Fan, B.; Wang, W.; Liu, Z.; Guo, J.; Yuan, H.; Tan, Y. Recent progress in single atomic catalysts for electrochemical N2 fixation. Microstructures 2024, 4, 2024025.

95. Wang, Q.; Lei, Y.; Wang, D.; Li, Y. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy. Environ. Sci. 2019, 12, 1730-50.

96. Zhang, R.; Jiao, L.; Yang, W.; Wan, G.; Jiang, H. Single-atom catalysts templated by metal-organic frameworks for electrochemical nitrogen reduction. J. Mater. Chem. A. 2019, 7, 26371-7.

97. Wu, Z. Y.; Karamad, M.; Yong, X.; et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

98. Langevelde PH, Katsounaros I, Koper MT. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 2021, 5, 290-4.

99. Sathishkumar, N.; Wu, S.; Chen, H. Mechanistic exploring the catalytic activity of single-atom catalysts anchored in graphitic carbon nitride toward electroreduction of nitrate-to-ammonia. Appl. Surf. Sci. 2022, 598, 153829.

100. Zhang, S.; Jin, M.; Shi, T.; et al. Electrocatalytically active Fe-(O-C2)4 single-atom sites for efficient reduction of nitrogen to ammonia. Angew. Chem. Int. Ed. 2020, 59, 13423-9.

101. Xu, J.; Zhang, S.; Liu, H.; et al. Breaking local charge symmetry of iron single atoms for efficient electrocatalytic nitrate reduction to ammonia. Angew. Chem. Int. Ed. 2023, 62, e202308044.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/