REFERENCES

1. Liang, X.; Fu, N.; Yao, S.; Li, Z.; Li, Y. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155-74.

2. Wang, W.; Zeng, C.; Tsubaki, N. Recent advancements and perspectives of the CO2 hydrogenation reaction. Green. Carbon. 2023, 1, 133-45.

3. Yang, Q.; Liu, W.; Wang, B.; et al. Regulating the spatial distribution of metal nanoparticles within metal-organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.

4. Liu, W.; Huang, J.; Yang, Q.; et al. Multi-shelled hollow metal-organic frameworks. Angew. Chem. Int. Ed. 2017, 56, 5512-6.

5. Meng, G.; Sun, W.; Mon, A. A.; et al. Strain regulation to optimize the acidic water oxidation performance of atomic-layer IrOx. Adv. Mater. 2019, 31, e1903616.

6. Jin, J.; Fang, Y.; Zhang, T.; Han, A.; Wang, B.; Liu, J. Ultrasmall Ag nanoclusters anchored on NiCo-layered double hydroxide nanoarray for efficient electrooxidation of 5-hydroxymethylfurfural. Sci. China. Mater. 2022, 65, 2704-10.

7. Yang, G.; Wang, D.; Wang, Y.; et al. Modulating the primary and secondary coordination spheres of single Ni(II) sites in metal-organic frameworks for boosting photocatalysis. J. Am. Chem. Soc. 2024, 146, 10798-805.

8. Shi, Z.; Zhang, X.; Lin, X.; et al. Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature 2023, 621, 300-5.

9. Wang, Q.; Wang, H.; Cao, H.; et al. Atomic metal-non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells. Nat. Catal. 2023, 6, 916-26.

10. Li, Y.; Sun, Y.; Qin, Y.; et al. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy. Mater. 2020, 10, 1903120.

11. Li, X.; Mitchell, S.; Fang, Y.; Li, J.; Perez-Ramirez, J.; Lu, J. Advances in heterogeneous single-cluster catalysis. Nat. Rev. Chem. 2023, 7, 754-67.

12. Qiao, B.; Wang, A.; Yang, X.; et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-41.

13. Li, X.; Rong, H.; Zhang, J.; Wang, D.; Li, Y. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano. Res. 2020, 13, 1842-55.

14. Zhou, A.; Wang, D.; Li, Y. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microstructures 2021. DOI: 10.20517/microstructures.2021.08.

15. Liang, C.; Han, X.; Zhang, T.; et al. Cu nanoclusters accelerate the rate-determining step of oxygen reduction on Fe-N-C in all pH range. Adv. Energy. Mater. 2024, 14, 2303935.

16. Han, A.; Wang, B.; Kumar, A.; et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small. Methods. 2019, 3, 1800471.

17. Zhang, N.; Zhang, X.; Tao, L.; et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem. Int. Ed. 2021, 60, 6170-6.

18. Zhang, N.; Yan, H.; Li, L.; et al. Use of rare earth elements in single-atom site catalysis: a critical review - commemorating the 100th anniversary of the birth of Academician Guangxian Xu. J. Rare. Earths. 2021, 39, 233-42.

19. Rocha, G. F. S. R.; da, S. M. A. R.; Rogolino, A.; et al. Carbon nitride based materials: more than just a support for single-atom catalysis. Chem. Soc. Rev. 2023, 52, 4878-932.

20. Ma, Z.; Zhang, T.; Lin, L.; Han, A.; Liu, J. Ni single-atom arrays as self-supported electrocatalysts for CO2RR. AIChE. J. 2023, 69, e18161.

21. Han, X.; Zhang, T.; Wang, X.; et al. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat. Commun. 2022, 13, 2900.

22. Zhang, T.; Han, X.; Yang, H.; et al. Atomically dispersed Nickel(I) on an alloy-encapsulated nitrogen-doped carbon nanotube array for high-performance electrochemical CO2 reduction reaction. Angew. Chem. Int. Ed. 2020, 59, 12055-61.

23. Zhao, Y.; Tian, Z.; Wang, W.; Deng, X.; Tseng, J.; Wang, G. Size-dependent activity of Fe-N-doped mesoporous carbon nanoparticles towards oxygen reduction reaction. Green. Carbon. 2024, 2, 221-30.

24. Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2021, 60, 4448-63.

25. Iemhoff, A.; Vennewald, M.; Palkovits, R. Single-atom catalysts on covalent triazine frameworks: at the crossroad between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2023, 62, e202212015.

26. Zhao, W.; Shen, J.; Xu, X.; et al. Functional catalysts for polysulfide conversion in Li-S batteries: from micro/nanoscale to single atom. Rare. Met. 2022, 41, 1080-100.

27. Zhang, T.; Wang, F.; Yang, C.; et al. Boosting ORR performance by single atomic divacancy Zn-N3C-C8 sites on ultrathin N-doped carbon nanosheets. Chem. Catal. 2022, 2, 836-52.

28. Han, X.; Zhang, T.; Chen, W.; et al. Mn-N4 oxygen reduction electrocatalyst: operando investigation of active sites and high performance in zinc-air battery. Adv. Energy. Mater. 2021, 11, 2002753.

29. Wang, C.; Humayun, M.; Debecker, D. P.; Wu, Y. Electrocatalytic water oxidation with layered double hydroxides confining single atoms. Coord. Chemistry. Rev. 2023, 478, 214973.

30. Zhou, D.; Li, P.; Lin, X.; et al. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790-817.

31. Wang, Y.; Zhang, M.; Liu, Y.; et al. Recent advances on transition-metal-based layered double hydroxides nanosheets for electrocatalytic energy conversion. Adv. Sci. 2023, 10, e2207519.

32. Fan, G.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040-66.

33. Long, X.; Wang, Z.; Xiao, S.; An, Y.; Yang, S. Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today. 2016, 19, 213-26.

34. Lang, R.; Du, X.; Huang, Y.; et al. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986-2043.

35. Shi, Q.; Cheng, M.; Liu, Y.; et al. In-situ generated MOFs with supportive LDH substrates and their derivatives for photo-electrocatalytic energy production and electrochemical devices: insights into synthesis, function, performance and mechanism. Coord. Chem. Rev. 2024, 499, 215500.

36. Hu, T.; Gu, Z.; Williams, G. R.; et al. Layered double hydroxide-based nanomaterials for biomedical applications. Chem. Soc. Rev. 2022, 51, 6126-76.

37. Jiang, S.; Zhang, M.; Xu, C.; et al. Recent developments in nickel-based layered double hydroxides for photo(-/)electrocatalytic water oxidation. ACS. Nano. 2024, 18, 16413-49.

38. Yan, H.; Lu, J.; Wei, M.; et al. Theoretical study of the hexahydrated metal cations for the understanding of their template effects in the construction of layered double hydroxides. J. Mol. Struct:. THEOCHEM. 2008, 866, 34-45.

39. Liu, G.; Wang, Z.; Shen, T.; Zheng, X.; Zhao, Y.; Song, Y. F. Atomically dispersed Rh-doped NiFe layered double hydroxides: precise location of Rh and promoting hydrazine electrooxidation properties. Nanoscale 2021, 13, 1869-74.

40. Sun, H.; Tung, C. W.; Qiu, Y.; et al. Atomic metal-support interaction enables reconstruction-free dual-site electrocatalyst. J. Am. Chem. Soc. 2022, 144, 1174-86.

41. Shen, T.; Song, Z.; Li, J.; et al. Enabling specific benzene oxidation by tuning the adsorption behavior on Au loaded MgAl layered double hydroxides. Small 2023, 19, e2303420.

42. Yu, H.; Wang, W.; Mao, Q.; et al. Pt single atom captured by oxygen vacancy-rich NiCo layered double hydroxides for coupling hydrogen evolution with selective oxidation of glycerol to formate. Appl. Catal. B:. Environ. 2023, 330, 122617.

43. Wang, B.; Fang, Y.; Han, X.; et al. Atomization-induced high intrinsic activity of a biocompatible MgAl-LDH supported Ru single-atom nanozyme for efficient radicals scavenging. Angew. Chem. Int. Ed. 2023, 62, e202307133.

44. Jin, J.; Han, X.; Fang, Y.; et al. Microenvironment engineering of Ru single-atom catalysts by regulating the cation vacancies in NiFe-layered double hydroxides. Adv. Funct. Mater. 2022, 32, 2109218.

45. Zhang, T.; Yang, X.; Jin, J.; et al. Modulating the electronic metal-support interactions to anti-leaching Pt single atoms for efficient hydrosilylation. Adv. Mater. 2024, 36, e2304144.

46. Zhang, T.; Jin, J.; Chen, J.; et al. Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 6875.

47. Li, P.; Wang, M.; Duan, X.; et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711.

48. Hu, Y.; Shen, T.; Song, Z.; et al. Atomic modulation of single dispersed Ir species on self-supported NiFe layered double hydroxides for efficient electrocatalytic overall water splitting. ACS. Catal. 2023, 13, 11195-203.

49. Chen, W.; Wu, B.; Wang, Y.; et al. Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy. Environ. Sci. 2021, 14, 6428-40.

50. Cao, X.; Qiao, Y.; Jia, M.; He, P.; Zhou, H. Ion-exchange: a promising strategy to design Li-rich and Li-excess layered cathode materials for Li-ion batteries. Adv. Energy. Mater. 2022, 12, 2003972.

51. Chen, S.; Tao, R.; Guo, C.; et al. A new trick for an old technology: ion exchange syntheses of advanced energy storage and conversion nanomaterials. Energy. Storage. Maters. 2021, 41, 758-90.

52. Mu, X.; Gu, X.; Dai, S.; et al. Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting. Energy. Environ. Sci. 2022, 15, 4048-57.

53. Chung, D. Y.; Lopes, P. P.; Farinazzo, B. D. M. P.; et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy. 2020, 5, 222-30.

54. Lin, X.; Wang, Z.; Cao, S.; et al. Bioinspired trimesic acid anchored electrocatalysts with unique static and dynamic compatibility for enhanced water oxidation. Nat. Commun. 2023, 14, 6714.

55. Kuai, C.; Xu, Z.; Xi, C.; et al. Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat. Catal. 2020, 3, 743-53.

56. He, W.; Zhang, R.; Liu, H.; et al. Atomically dispersed silver atoms embedded in NiCo layer double hydroxide boost oxygen evolution reaction. Small 2023, 19, e2301610.

57. Wang, F.; Zou, P.; Zhang, Y.; et al. Activating lattice oxygen in high-entropy LDH for robust and durable water oxidation. Nat. Commun. 2023, 14, 6019.

58. Ling, T.; Jaroniec, M.; Qiao, S. Z. Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions. Adv. Mater. 2020, 32, e2001866.

59. Nandan, R.; Devi, H. R.; Kumar, R.; Singh, A. K.; Srivastava, C.; Nanda, K. K. Inner sphere electron transfer promotion on homogeneously dispersed Fe-Nx centers for energy-efficient oxygen reduction reaction. ACS. Appl. Mater. Interfaces. 2020, 12, 36026-39.

60. Chen, Y.; Lin, J.; Jia, B.; Wang, X.; Jiang, S.; Ma, T. Isolating single and few atoms for enhanced catalysis. Adv. Mater. 2022, 34, e2201796.

61. Li, X.; Liu, L.; Ren, X.; Gao, J.; Huang, Y.; Liu, B. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci. Adv. 2020, 6.

62. Han, B.; Luo, Y.; Lin, Y.; et al. Microenvironment engineering of single-atom catalysts for persulfate-based advanced oxidation processes. Chem. Eng. J. 2022, 447, 137551.

63. Lai, W.; Miao, Z.; Wang, Y.; Wang, J.; Chou, S. Atomic-local environments of single-atom catalysts: synthesis, electronic structure, and activity. Adv. Energy. Mater. 2019, 9, 1900722.

64. Wang, L.; Ma, M.; Zhang, C.; et al. Manipulating the microenvironment of single atoms by switching support crystallinity for industrial hydrogen evolution. Angew. Chem. Int. Ed. 2024, 63, e202317220.

65. Yang, P. P.; Gao, M. R. Enrichment of reactants and intermediates for electrocatalytic CO2 reduction. Chem. Soc. Rev. 2023, 52, 4343-80.

66. Han, S. G.; Ma, D. D.; Zhu, Q. L. Atomically structural regulations of carbon-based single-atom catalysts for electrochemical CO2 reduction. Small. Methods. 2021, 5, e2100102.

67. Li, J.; Zhang, L.; Doyle‐davis, K.; Li, R.; Sun, X. Recent advances and strategies in the stabilization of single-atom catalysts for electrochemical applications. Carbon. Energy. 2020, 2, 488-520.

68. Gloag, L.; Somerville, S. V.; Gooding, J. J.; Tilley, R. D. Co-catalytic metal-support interactions in single-atom electrocatalysts. Nat. Rev. Mater. 2024, 9, 173-89.

69. Qi, K.; Chhowalla, M.; Voiry, D. Single atom is not alone: metal-support interactions in single-atom catalysis. Mater. Today. 2020, 40, 173-92.

70. Zhang, L.; Zhao, X.; Yuan, Z.; Wu, M.; Zhou, H. Oxygen defect-stabilized heterogeneous single atom catalysts: preparation, properties and catalytic application. J. Mater. Chem. A. 2021, 9, 3855-79.

71. Zhang, Y.; Guo, L.; Tao, L.; Lu, Y.; Wang, S. Defect-based single-atom electrocatalysts. Small. Methods. 2019, 3, 1800406.

72. Yang, J.; An, L.; Wang, S.; et al. Defects engineering of layered double hydroxide-based electrocatalyst for water splitting. Chin. J. Catal. 2023, 55, 116-36.

73. Xie, Q.; Cai, Z.; Li, P.; et al. Layered double hydroxides with atomic-scale defects for superior electrocatalysis. Nano. Res. 2018, 11, 4524-34.

74. Zhai, P.; Xia, M.; Wu, Y.; et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.

75. Fan, B.; Wang, W.; Liu, Z.; Guo, J.; Yuan, H.; Tan, Y. Recent progress in single atomic catalysts for electrochemical N2 fixation. Microstructures 2024, 4, 2024025.

76. Liu, X.; Liu, Y.; Yang, W.; Feng, X.; Wang, B. Controlled modification of axial coordination for transition-metal single-atom electrocatalyst. Chem. Eur. J. 2022, 28, e202201471.

77. Zhang, L.; Jin, N.; Yang, Y.; et al. Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: a review. Nano-Micro. Lett. 2023, 15, 228.

78. Duan, X.; Sha, Q.; Li, P.; et al. Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis. Nat. Commun. 2024, 15, 1973.

79. Duan, X.; Li, P.; Zhou, D.; et al. Stabilizing single-atomic ruthenium by ferrous ion doped NiFe-LDH towards highly efficient and sustained water oxidation. Chem. Eng. J. 2022, 446, 136962.

80. Roth-zawadzki, A. M.; Nielsen, A. J.; Tankard, R. E.; Kibsgaard, J. Dual and triple atom electrocatalysts for energy conversion (CO2RR, NRR, ORR, OER, and HER): synthesis, characterization, and activity evaluation. ACS. Catal. 2024, 14, 1121-45.

81. Wang, Y.; Mao, J.; Meng, X.; Yu, L.; Deng, D.; Bao, X. Catalysis with two-dimensional materials confining single atoms: concept, design, and applications. Chem. Rev. 2019, 119, 1806-54.

82. Zhang, W.; Zhao, Y.; Huang, W.; Huang, T.; Wu, B. Coordination environment manipulation of single atom catalysts: regulation strategies, characterization techniques and applications. Coord. Chem. Rev. 2024, 515, 215952.

83. Finzel, J.; Sanroman, G. K. M.; Hoffman, A. S.; Resasco, J.; Christopher, P.; Bare, S. R. Limits of detection for EXAFS characterization of heterogeneous single-atom catalysts. ACS. Catal. 2023, 13, 6462-73.

84. Chang, B.; Zhang, L.; Wu, S.; Sun, Z.; Cheng, Z. Engineering single-atom catalysts toward biomedical applications. Chem. Soc. Rev. 2022, 51, 3688-734.

85. Li, L.; Wang, P.; Shao, Q.; Huang, X. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072-106.

86. Ning, Y.; Sun, Y.; Yang, X.; et al. Defect-rich CoFe-layered double hydroxides as superior peroxidase-like nanozymes for the detection of ascorbic acid. ACS. Appl. Mater. Interfaces. 2023, 15, 26263-72.

87. Zheng, X.; Li, P.; Dou, S.; et al. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy. Environ. Sci. 2021, 14, 2809-58.

88. Yu, Z.; Sun, Q.; Zhang, L.; et al. Research progress of amorphous catalysts in the field of electrocatalysis. Microstructures 2024, 4, 2024022.

89. Mao, J.; Wang, Y.; Zhang, B.; et al. Advances in electrocarboxylation reactions with CO2. Green. Carbon. 2024, 2, 45-56.

90. Zeng, K.; Chao, M.; Tian, M.; et al. Atomically dispersed cerium sites immobilized on vanadium vacancies of monolayer nickel‐vanadium layered double hydroxide: accelerating water splitting kinetics. Adv. Funct. Mater. 2024, 34, 2308533.

91. Wang, B.; Han, X.; Guo, C.; et al. Structure inheritance strategy from MOF to edge-enriched NiFe-LDH array for enhanced oxygen evolution reaction. Appl. Catal. B:. Environ. 2021, 298, 120580.

92. Wang, X.; Zhou, J.; Cui, W.; et al. Electron manipulation and surface reconstruction of bimetallic iron-nickel phosphide nanotubes for enhanced alkaline water electrolysis. Adv. Sci. 2024, 11, e2401207.

93. Zhao, D.; Zhuang, Z.; Cao, X.; et al. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215-64.

94. Hameed, A.; Batool, M.; Liu, Z.; Nadeem, M. A.; Jin, R. Layered double hydroxide-derived nanomaterials for efficient electrocatalytic water splitting: recent progress and future perspective. ACS. Energy. Lett. 2022, 7, 3311-28.

95. Zhang, J.; Liu, J.; Xi, L.; et al. Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876-9.

96. Chen, X.; Wan, J.; Zheng, M.; et al. Engineering single atomic ruthenium on defective nickel vanadium layered double hydroxide for highly efficient hydrogen evolution. Nano. Res. 2023, 16, 4612-9.

97. Biswal, S.; Divya; Mishra, B.; et al. Electronic modulation of iridium single atomic sites on NiCr layered double hydroxide for an improved electrocatalytic oxygen evolution reaction. J. Mater. Chem. A. 2024, 12, 2491-500.

98. Zeng, K.; Tian, M.; Chen, X.; et al. Strong electronic coupling between single Ru atoms and cobalt-vanadium layered double hydroxide harness efficient water splitting. Chem. Eng. J. 2023, 452, 139151.

99. Yu, Z.; Liu, L. Recent Advances in hybrid seawater electrolysis for hydrogen production. Adv. Mater. 2024, 36, e2308647.

100. Du, J.; Xiang, D.; Zhou, K.; et al. Electrochemical hydrogen production coupled with oxygen evolution, organic synthesis, and waste reforming. Nano. Energy. 2022, 104, 107875.

101. Xu, H.; Xin, G.; Hu, W.; et al. Single-atoms Ru/NiFe layered double hydroxide electrocatalyst: efficient for oxidation of selective oxidation of 5-hydroxymethylfurfural and oxygen evolution reaction. Appl. Catal. B:. Environ. 2023, 339, 123157.

102. Sun, H.; Li, L.; Chen, H. C.; et al. Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide. Sci. Bull. 2022, 67, 1763-75.

103. Khalafallah, D.; Farghaly, A. A.; Ouyang, C.; Huang, W.; Hong, Z. Atomically dispersed Pt single sites and nanoengineered structural defects enable a high electrocatalytic activity and durability for hydrogen evolution reaction and overall urea electrolysis. J. Power. Sources. 2023, 558, 232563.

104. Meng, G.; Chang, Z.; Zhu, L.; et al. Adsorption site regulations of [W-O]-doped CoP boosting the hydrazine oxidation-coupled hydrogen evolution at elevated current density. Nano-Micro. Lett. 2023, 15, 212.

105. Wang, Z.; Xu, S. M.; Xu, Y.; et al. Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis. Chem. Sci. 2019, 10, 378-84.

106. Li, L.; Zhang, N. Atomic dispersion of bulk/nano metals to atomic-sites catalysts and their application in thermal catalysis. Nano. Res. 2023, 16, 6380-401.

107. Mori, K.; Taga, T.; Yamashita, H. Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid. ACS. Catal. 2017, 7, 3147-51.

108. Zhou, X.; Yang, Z.; Chen, Y.; et al. Single-atom Ru loaded on layered double hydroxide catalyzes peroxymonosulfate for effective E. coli , 440, 129720.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/