REFERENCES
1. Thakur, A. K.; Majumder, M.; Singh, S. B. Graphene and its derivatives for secondary battery application. In: Sahoo S, Tiwari SK, Nayak GC, editors. Surface Engineering of Graphene. Cham: Springer International Publishing; 2019. pp. 53-80.
2. Ahmad, H.; Kamarudin, S. K.; Minggu, L. J.; Hasran, U. A.; Masdar, S.; Wan, D. W. R. Enhancing methanol oxidation with a TiO2 -modified semiconductor as a photo-catalyst. Int. J. Hydrogen. Energy. 2017, 42, 8986-96.
3. Selvan, K. V.; Hasan, M. N.; Mohamed, A. M. S. State-of-the-art reviews and analyses of emerging research findings and achievements of thermoelectric materials over the past years. J. Electron. Mater. 2019, 48, 745-77.
4. Novak, T. G.; Kim, J.; Kim, J.; et al. Complementary n-type and p-type graphene films for high power factor thermoelectric generators. Adv. Funct. Materials. 2020, 30, 2001760.
5. Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2016, 16, 57-69.
8. Liu, W.; Tan, X.; Yin, K.; et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Phys. Rev. Lett. 2012, 108, 166601.
9. Qian, X.; Wu, H.; Wang, D.; et al. Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe. Energy. Environ. Sci. 2019, 12, 1969-78.
10. Jang, H.; Kim, S.; Park, I.; et al. Long-range ordered graphitic structure in silk fibers delaminated using dopamine and thermal treatment for super-flexible electronic textiles: Possible applications for magnetic and thermoelectric textiles. Adv. Compos. Hybrid. Mater. 2024, 7, 857.
11. Hsu, K. F.; Loo, S.; Guo, F.; et al. Cubic AgPb(m)SbTe(2+m): bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818-21.
12. Li, J.; Zhang, X.; Lin, S.; Chen, Z.; Pei, Y. Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying. Chem. Mater. 2017, 29, 605-11.
13. Xiao, Y.; Zhao, L. Charge and phonon transport in PbTe-based thermoelectric materials. npj. Quant. Mater. 2018, 3, 127.
14. Hodges, J. M.; Hao, S.; Grovogui, J. A.; et al. Chemical insights into PbSe- x%HgSe: high power factor and improved thermoelectric performance by alloying with discordant atoms. J. Am. Chem. Soc. 2018, 140, 18115-23.
15. Tan, G.; Shi, F.; Hao, S.; et al. Codoping in SnTe: Enhancement of thermoelectric performance through synergy of resonance levels and band convergence. J. Am. Chem. Soc. 2015, 137, 5100-12.
16. Li, J.; Tan, Q.; Li, J.; et al. BiSbTe-based nanocomposites with High ZT : the effect of sic nanodispersion on thermoelectric properties. Adv. Funct. Materials. 2013, 23, 4317-23.
17. Fang, T.; Li, X.; Hu, C.; et al. Complex band structures and lattice dynamics of Bi2Te3-based compounds and solid solutions. Adv. Funct. Materials. 2019, 29, 1900677.
18. Mizuguchi, Y.; Nishida, A.; Omachi, A.; Miura, O.; Saini, N. L. Thermoelectric properties of new Bi-chalcogenide layered compounds. Cogent. Physics. 2016, 3.
19. Zhao, L. D.; Wu, H. J.; Hao, S. Q.; et al. All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy. Environ. Sci. 2013, 6, 3346.
21. Zhang, X.; Bu, Z.; Lin, S.; Chen, Z.; Li, W.; Pei, Y. GeTe Thermoelectrics. Joule 2020, 4, 986-1003.
22. Li, J.; Chen, Z.; Zhang, X.; Sun, Y.; Yang, J.; Pei, Y. Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides. NPG. Asia. Mater. 2017, 9, e353-e353.
23. Perumal, S.; Roychowdhury, S.; Negi, D. S.; Datta, R.; Biswas, K. High Thermoelectric performance and enhanced mechanical stability of p-type Ge1–x SbxTe. Chem. Mater. 2015, 27, 7171-8.
24. Li, J.; Chen, Z.; Zhang, X.; et al. Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics. Adv. Sci. (Weinh). 2017, 4, 1700341.
25. Chen, Z.; Ge, B.; Li, W.; et al. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nat. Commun. 2017, 8, 13828.
26. Liu, C.; Zhang, Z.; Peng, Y.; et al. Charge transfer engineering to achieve extraordinary power generation in GeTe-based thermoelectric materials. Sci. Adv. 2023, 9, eadh0713.
28. Donadio, D.; Galli, G. Atomistic simulations of heat transport in silicon nanowires. Phys. Rev. Lett. 2009, 102, 195901.
29. Biswas, K.; He, J.; Blum, I. D.; et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414-8.
31. Liang, L.; Lv, H.; Shi, X. L.; et al. A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor. Mater. Horiz. 2021, 8, 2750-60.
32. Zhang, L.; Shi, X.; Yang, Y.; Chen, Z. Flexible thermoelectric materials and devices: From materials to applications. Mater. Today. 2021, 46, 62-108.
33. Huang, L.; Lin, S.; Xu, Z.; et al. Fiber-based energy conversion devices for human-body energy harvesting. Adv. Mater. 2020, 32, e1902034.
34. Yang, Q.; Yang, S.; Qiu, P.; et al. Flexible thermoelectrics based on ductile semiconductors. Science 2022, 377, 854-8.
35. Shi, X.; Chen, H.; Hao, F.; et al. Room-temperature ductile inorganic semiconductor. Nat. Mater. 2018, 17, 421-6.
36. Yang, S.; Gao, Z.; Qiu, P.; et al. Ductile Ag20S7Te3 with excellent shape-conformability and high thermoelectric performance. Adv. Mater. 2021, 33, e2007681.
37. Zhang, H.; Zhang, Y.; Chen, C.; Yu, P.; Wang, L. M.; Li, G. High-conductivity chalcogenide glasses in Ag-Ga2Te3-SnTe systems and their suitability as thermoelectric materials. ACS. Appl. Mater. Interfaces. 2023, 15, 19170-7.
38. Gao, Z.; Yang, Q.; Qiu, P.; et al. p-Type plastic inorganic thermoelectric materials. Adv. Energy. Mater. 2021, 11, 2100883.
39. Wang, Y.; Qiu, P.; Yang, S.; Gao, Z.; Chen, L.; Shi, X. Mechanical and thermoelectric properties in Te-rich Ag2(Te,S) meta-phases. J. Materiomics. 2024, 10, 543-51.
40. Yang, Q.; Ming, C.; Qiu, P.; et al. Incommensurately modulated structure in AgCuSe-based thermoelectric materials for intriguing electrical, thermal, and mechanical properties. Small 2023, 19, e2300699.
41. Liang, J.; Wang, T.; Qiu, P.; et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy. Environ. Sci. 2019, 12, 2983-90.
42. Kang, M.; Qu, R.; Sun, X.; et al. Self-powered temperature electronic skin based on island-bridge structure and Bi-Te micro-thermoelectric generator for distributed mini-region sensing. Adv. Mater. 2023, 35, e2309629.
43. Aguayo-Tapia, S.; Avalos-Almazan, G.; Rangel-Magdaleno, J. J. Entropy-based methods for motor fault detection: a review. Entropy. (Basel). 2024, 26, 299.
44. Yuan, J.; Zhang, Y.; Wei, C.; Zhu, R. A fully self-powered wearable leg movement sensing system for human health monitoring. Adv. Sci. (Weinh). 2023, 10, e2303114.
45. Hou, Y.; Yang, Y.; Wang, Z.; et al. Whole fabric-assisted thermoelectric devices for wearable electronics. Adv. Sci. (Weinh). 2022, 9, e2103574.
46. Lee, B.; Cho, H.; Park, K. T.; et al. High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat. Commun. 2020, 11, 5948.
47. Liu, Y.; Hou, S.; Wang, X.; et al. Passive radiative cooling enables improved performance in wearable thermoelectric generators. Small 2022, 18, e2106875.
48. Twaha, S.; Zhu, J.; Yan, Y.; Li, B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renew. Sustain. Energy. Rev. 2016, 65, 698-726.
49. Nozariasbmarz, A.; Collins, H.; Dsouza, K.; et al. Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Appl. Energy. 2020, 258, 114069.
50. Jiang, Y.; Dong, J.; Zhuang, H. L.; et al. Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials. Nat. Commun. 2022, 13, 6087.
51. Spann, B. T.; Weber, J. C.; Brubaker, M. D.; et al. Semiconductor thermal and electrical properties decoupled by localized phonon resonances. Adv. Mater. 2023, 35, e2209779.
52. Tarascon, J.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Materials for Sustainable Energy. Co-Published with Macmillan Publishers Ltd, UK; 2010. pp. 171-9.
53. Yin, L.; Kim, K. N.; Trifonov, A.; Podhajny, T.; Wang, J. Designing wearable microgrids: towards autonomous sustainable on-body energy management. Energy. Environ. Sci. 2022, 15, 82-101.
54. Yan, Q.; Kanatzidis, M. G. High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 2022, 21, 503-13.
55. Kim, F.; Kwon, B.; Eom, Y.; et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy. 2018, 3, 301-9.
56. Chowdhury, I.; Prasher, R.; Lofgreen, K.; et al. On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 2009, 4, 235-8.
57. Li, G.; Garcia, F. J.; Lara, R. D. A.; et al. Integrated microthermoelectric coolers with rapid response time and high device reliability. Nat. Electron. 2018, 1, 555-61.
58. Snyder, G. J.; Lim, J. R.; Huang, C. K.; Fleurial, J. P. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2003, 2, 528-31.
59. Morelli, D. T.; Meisner, G. P. Low temperature properties of the filled skutterudite CeFe4Sb12. Journal. of. Applied. Physics. 1995, 77, 3777-81.
60. Yan, X.; Poudel, B.; Ma, Y.; et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano. Lett. 2010, 10, 3373-8.
61. Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z.; Park, S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, e1904765.
62. Chun, S.; Kim, J.; Yoo, Y.; et al. An artificial neural tactile sensing system. Nat. Electron. 2021, 4, 429-38.
63. Pyo, S.; Lee, J.; Bae, K.; Sim, S.; Kim, J. Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 2021, 33, e2005902.
64. Wei, Y.; Li, X.; Wang, Y.; et al. Graphene-based multifunctional textile for sensing and actuating. ACS. Nano. 2021, 15, 17738-47.
65. Jung, Y. H.; Hong, S. K.; Wang, H. S.; et al. Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater. 2020, 32, e1904020.
67. Zhou, Q.; Ji, B.; Hu, F.; et al. Magnetized microcilia array-based self-powered electronic skin for micro-scaled 3D morphology recognition and high-capacity communication. Adv. Funct. Materials. 2022, 32, 2208120.
68. Cao, Z.; Yang, Y.; Zheng, Y.; et al. Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin. J. Mater. Chem. A. 2019, 7, 25314-23.
69. Bermúdez GS, Makarov D. Magnetosensitive e-skins for interactive devices. Adv. Funct. Materials. 2021, 31, 2007788.
70. Lu, L.; Jiang, C.; Hu, G.; Liu, J.; Yang, B. Flexible noncontact sensing for human-machine interaction. Adv. Mater. 2021, 33, e2100218.
71. Sun, T.; Zhou, B.; Zheng, Q.; Wang, L.; Jiang, W.; Snyder, G. J. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat. Commun. 2020, 11, 572.
72. Wang, Y.; Liu, K.; Zhao, W.; et al. Antibacterial fabrics based on synergy of piezoelectric effect and physical interaction. Nano. Today. 2023, 48, 101737.
73. Qiu, W.; Feng, Y.; Luo, N.; Chen, S.; Wang, D. Sandwich-like sound-driven triboelectric nanogenerator for energy harvesting and electrochromic based on Cu foam. Nano. Energy. 2020, 70, 104543.
74. Chen, Z.; Guan, X.; Wen, N.; Pan, L.; Fan, Z. Construction of flexible, self-supporting, and in-plane anisotropic PEDOT:PSS thermoelectric films via the wet-winding approach. ACS. Appl. Polym. Mater. 2023, 5, 2905-16.
75. Li, Y. Y.; Qin, X. Y.; Li, D.; et al. Enhanced thermoelectric performance of Cu2Se/Bi0.4Sb1.6Te3 nanocomposites at elevated temperatures. Appl. Phys. Lett. 2016, 108, 062104.
76. Cao, T.; Shi, X.; Chen, Z. Advances in the design and assembly of flexible thermoelectric device. Prog. Mater. Sci. 2023, 131, 101003.
77. Lee, T.; Park, K. T.; Ku, B. C.; Kim, H. Carbon nanotube fibers with enhanced longitudinal carrier mobility for high-performance all-carbon thermoelectric generators. Nanoscale 2019, 11, 16919-27.
78. Zhang, T.; Li, K.; Zhang, J.; et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano. Energy. 2017, 41, 35-42.
79. Shalini, V.; Harish, S.; Archana, J.; Ikeda, H.; Navaneethan, M. Interface effect and band engineering in Bi2Te3:C and Bi2Te3:Ni-Cu with enhanced thermopower for self-powered wearable thermoelectric generator. J. Alloys. Compd. 2021, 868, 158905.
80. Yang, Z. Y.; Jin, X. Z.; Huang, C. H.; Lei, Y. Z.; Wang, Y. Constructing A/B-Side heterogeneous asynchronous structure with Ag2Se layers and bushy-like PPy toward high-performance flexible photo-thermoelectric generators. ACS. Appl. Mater. Interfaces. , 2022, 33370-82.
81. Lu, Y.; Qiu, Y.; Cai, K.; et al. Ultrahigh performance PEDOT/Ag2Se/CuAgSe composite film for wearable thermoelectric power generators. Mater. Today. Phys. 2020, 14, 100223.
82. Hou, S.; Liu, Y.; Yin, L.; et al. High performance wearable thermoelectric generators using Ag2Se films with large carrier mobility. Nano. Energy. 2021, 87, 106223.
83. He, X.; Shi, J.; Hao, Y.; et al. Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing. Carbon. Energy. 2022, 4, 621-32.
84. Lucas, P.; Conseil, C.; Yang, Z.; et al. Thermoelectric bulk glasses based on the Cu–As–Te–Se system. J. Mater. Chem. A. 2013, 1, 8917.
85. Jia, Y.; Jiang, Q.; Sun, H.; et al. Wearable thermoelectric materials and devices for self-powered electronic systems. Adv. Mater. 2021, 33, e2102990.
86. Yuan, X.; Li, Z.; Shao, Y.; et al. Bi2Te3-based wearable thermoelectric generator with high power density: from structure design to application. J. Mater. Chem. C. 2022, 10, 6456-63.
87. Yao, H.; Fan, Z.; Cheng, H.; et al. Recent development of thermoelectric polymers and composites. Macromol. Rapid. Commun. 2018, 39, e1700727.
88. Wang, H.; Yu, C. Organic Thermoelectrics: materials preparation, performance optimization, and device integration. Joule 2019, 3, 53-80.
89. Li, M.; Hong, M.; Dargusch, M.; Zou, J.; Chen, Z. High-efficiency thermocells driven by thermo-electrochemical processes. Trends. Chem. 2021, 3, 561-74.
90. Song, W.; Liu, X.; Li, T.; et al. The strategy of achieving flexibility in materials and configuration of flexible lithium-ion batteries. Energy. Tech. 2021, 9, 2100539.
91. Hong, X.; Mei, J.; Wen, L.; et al. Nonlithium metal-sulfur batteries: steps toward a leap. Adv. Mater. 2019, 31, e1802822.
92. Cui, Y.; He, X.; Liu, W.; Zhu, S.; Zhou, M.; Wang, Q. Highly stretchable, sensitive, and multifunctional thermoelectric fabric for synergistic-sensing systems of human signal monitoring. Adv. Fiber. Mater. 2024, 6, 170-80.
93. Luo, Y.; Zhao, L.; Luo, G.; et al. Highly sensitive piezoresistive and thermally responsive fibrous networks from the in situ growth of PEDOT on MWCNT-decorated electrospun PU fibers for pressure and temperature sensing. Microsyst. Nanoeng. 2023, 9, 113.
94. Li, T. T.; Fan, X. X.; Zhang, X.; Zhang, X.; Lou, C. W.; Lin, J. H. Photothermoelectric synergistic hydrovoltaic effect: a flexible photothermoelectric yarn panel for multiple renewable-energy harvesting. ACS. Appl. Mater. Interfaces. 2023. DOI: 10.1021/acsami.3c14033.
95. Ma, H.; Pu, S.; Wu, H.; et al. Flexible Ag2Se thermoelectric films enable the multifunctional thermal perception in electronic skins. ACS. Appl. Mater. Interfaces. 2024, 16, 7453-62.
96. Hyland, M.; Hunter, H.; Liu, J.; Veety, E.; Vashaee, D. Wearable thermoelectric generators for human body heat harvesting. Appl. Energy. 2016, 182, 518-24.
97. Chen, G.; Li, Y.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668-720.
98. Elmoughni, H. M.; Atalay, O.; Ozlem, K.; Menon, A. K. Thermoelectric clothing for body heat harvesting and personal cooling: design and fabrication of a textile-integrated flexible and vertical device. Energy. Tech. 2022, 10, 2200528.
99. Zheng, Y.; Han, X.; Yang, J.; et al. Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy. Environ. Sci. 2022, 15, 2374-85.
100. Kwon, C.; Lee, S.; Won, C.; et al. Multi-functional and stretchable thermoelectric Bi2Te3 fabric for strain, pressure, and temperature-sensing. Adv. Funct. Materials. 2023, 33, 2300092.
101. Hajji, M.; Absike, H.; Labrim, H.; Ez-zahraouy, H.; Benaissa, M.; Benyoussef, A. Strain effects on the electronic and thermoelectric properties of Bi2Te3: A first principles study. Comput. Condens. Matter. 2018, 16, e00299.
102. Li, N.; Wang, Q.; Shen, C.; et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 2020, 3, 711-7.
103. Liu, S.; Zhang, M.; Kong, J.; Li, H.; He, C. Flexible, durable, green thermoelectric composite fabrics for textile-based wearable energy harvesting and self-powered sensing. Compos. Sci. Technol. 2023, 243, 110245.
104. Suarez, F.; Nozariasbmarz, A.; Vashaee, D.; Öztürk, M. C. Designing thermoelectric generators for self-powered wearable electronics. Energy. Environ. Sci. 2016, 9, 2099-113.
105. Shen, D.; Xiao, M.; Zou, G.; Liu, L.; Duley, W. W.; Zhou, Y. N. Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 2018, 30, e1705925.
106. Liu, L.; Wu, J.; Wu, L.; et al. Phase-selective synthesis of 1T' MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108-14.
107. Xue, Y.; Cao, Y.; Luo, P.; et al. Asymmetric sandwich janus structure for high-performance textile-based thermo–hydroelectric generators toward human health monitoring. Adv. Funct. Materials. 2024, 34, 2310485.
108. Wen, N.; Guan, X.; Zuo, X.; et al. Investigations of morphology and carrier transport characteristics in high-performance PEDOT:PSS/tellurium binary composite fibers produced via continuous wet-spinning. Adv. Funct. Materials. 2024, 34, 2315677.
109. Wang, X.; Liang, L.; Lv, H.; Zhang, Y.; Chen, G. Elastic aerogel thermoelectric generator with vertical temperature-difference architecture and compression-induced power enhancement. Nano. Energy. 2021, 90, 106577.
110. Zhang, L.; Lin, S.; Hua, T.; Huang, B.; Liu, S.; Tao, X. Fiber-based thermoelectric generators: materials, device structures, fabrication, characterization, and applications. Adv. Energy. Mater. 2018, 8, 1700524.
112. Jeong, J. W.; McCall, J. G.; Shin, G.; et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 2015, 162, 662-74.
113. Kim, E. S.; Hwang, J. Y.; Lee, K. H.; Ohta, H.; Lee, Y. H.; Kim, S. W. Graphene substrate for van der waals epitaxy of layer-structured bismuth antimony telluride thermoelectric film. Adv. Mater. 2017, 29.
114. Jin, Q.; Zhao, Y.; Long, X.; et al. Flexible carbon nanotube-epitaxially grown nanocrystals for micro-thermoelectric modules. Adv. Mater. 2023, 35, e2304751.
115. Xu, N.; Zhu, P.; Sheng, Y.; et al. Synergistic tandem solar electricity-water generators. Joule 2020, 4, 347-58.
116. Zhu, P.; Shi, C.; Wang, Y.; et al. Recyclable, healable, and stretchable high-power thermoelectric generator. Adv. Energy. Mater. 2021, 11, 2100920.
117. Kraemer, D.; Poudel, B.; Feng, H. P.; et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 2011, 10, 532-8.
118. Fukui, T.; Kawai, S.; Fujinuma, S.; et al. Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nat. Chem. 2017, 9, 493-9.
119. Zhuo, M.; Tao, Y.; Wang, X.; et al. 2D organic photonics: an asymmetric optical waveguide in self-assembled halogen-bonded cocrystals. Angew. Chem. 2018, 130, 11470-4.
120. Zhen, X.; Pu, K.; Jiang, X. Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: signal amplification and second near-infrared construction. Small 2021, 17, e2004723.
121. Xu, J.; Chen, Q.; Li, S.; et al. Charge-transfer cocrystal via a persistent radical cation acceptor for efficient solar-thermal conversion. Angew. Chem. 2022, 134, e202202571.
122. Kim, B.; Shin, H.; Park, T.; Lim, H.; Kim, E. NIR-sensitive poly(3,4-ethylenedioxyselenophene) derivatives for transparent photo-thermo-electric converters. Adv. Mater. 2013, 25, 5483-9.
123. Zhang, T.; Wang, Z.; Srinivasan, B.; et al. Ultraflexible glassy semiconductor fibers for thermal sensing and positioning. ACS. Appl. Mater. Interfaces. 2019, 11, 2441-7.
124. Lü, B.; Chen, Y.; Li, P.; Wang, B.; Müllen, K.; Yin, M. Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion. Nat. Commun. 2019, 10, 767.
125. Zhao, Y. D.; Han, J.; Chen, Y.; et al. Organic charge-transfer cocrystals toward large-area nanofiber membrane for photothermal conversion and imaging. ACS. Nano. 2022, 16, 15000-7.
126. Zhao, Y. D.; Jiang, W.; Zhuo, S.; et al. Stretchable photothermal membrane of NIR-II charge-transfer cocrystal for wearable solar thermoelectric power generation. Sci. Adv. 2023, 9, eadh8917.
127. Yan, W.; Dong, C.; Xiang, Y.; et al. Thermally drawn advanced functional fibers: New frontier of flexible electronics. Mater. Today. 2020, 35, 168-94.
128. Loke, G.; Yan, W.; Khudiyev, T.; Noel, G.; Fink, Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 2020, 32, e1904911.
129. Zhang, J.; Zhang, T.; Zhang, H.; et al. Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics. Adv. Mater. 2020, 32, e2002702.
130. Sun, M.; Tang, G.; Huang, B.; et al. Tailoring microstructure and electrical transportation through tensile stress in Bi2Te3 thermoelectric fibers. J. Materiomics. 2020, 6, 467-75.
131. Sun, M.; Tang, G.; Wang, H.; et al. Enhanced Thermoelectric Properties of Bi2Te3 -Based Micro-Nano Fibers via Thermal Drawing and Interfacial Engineering. Adv. Mater. 2022, 34, e2202942.
132. Zhang, X.; Shiu, B.; Li, T.; et al. Synergistic work of photo-thermoelectric and hydroelectric effects of hierarchical structure photo-thermoelectric textile for solar energy harvesting and solar steam generation simultaneously. Chem. Eng. J. 2021, 426, 131923.
133. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; et al. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-9.
134. Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201-4.
135. Gupta, S.; Navaraj, W. T.; Lorenzelli, L.; Dahiya, R. Ultra-thin chips for high-performance flexible electronics. npj. Flex. Electron. 2018, 2, 21.
136. Niu, Q.; Peng, Q.; Lu, L.; et al. Single molecular layer of silk nanoribbon as potential basic building block of silk materials. ACS. Nano. 2018, 12, 11860-70.
137. Jeon, J. W.; Cho, S. Y.; Jeong, Y. J.; et al. Pyroprotein-based electronic textiles with high stability. Adv. Mater. 2017, 29.
138. Wang, C.; Li, X.; Gao, E.; et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 2016, 28, 6640-8.
139. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426-30.
140. He, G.; Xu, M.; Zhao, J.; et al. Bioinspired ultrastrong solid electrolytes with fast proton conduction along 2D channels. Adv. Mater. 2017, 29.
141. Liu, T.; Zhang, R.; Chen, M.; et al. Vertically aligned polyamidoxime/graphene oxide hybrid sheets’ membrane for ultrafast and selective extraction of uranium from seawater. Adv. Funct. Materials. 2022, 32, 2111049.
142. Bubnova, O.; Khan, Z. U.; Malti, A.; et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 2011, 10, 429-33.
143. Du, C.; Cao, M.; Li, G.; et al. Toward precision recognition of complex hand motions: wearable thermoelectrics by synergistic 2D nanostructure confinement and controlled reduction. Adv. Funct. Materials. 2022, 32, 2206083.
144. Chung, T.; Kaufman, J. H.; Heeger, A. J.; Wudl, F. Charge storage in doped poly(thiophene): Optical and electrochemical studies. Phys. Rev. B. 1984, 30, 702-10.
145. Li, Z.; Xu, Y.; Wu, L.; Cui, J.; Dou, H.; Zhang, X. Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells. Nat. Commun. 2023, 14, 6816.
146. Kwon, D. A.; Lee, S.; Kim, C. Y.; Kang, I.; Park, S.; Jeong, J. W. Body-temperature softening electronic ink for additive manufacturing of transformative bioelectronics via direct writing. Sci. Adv. 2024, 10, eadn1186.
147. Byun, S.; Sim, J.; Agno, K.; Jeong, J. Materials and manufacturing strategies for mechanically transformative electronics. Mater. Today. Adv. 2020, 7, 100089.
148. Byun, S. H.; Kim, C. S.; Agno, K. C.; et al. Design strategy for transformative electronic system toward rapid, bidirectional stiffness tuning using graphene and flexible thermoelectric device interfaces. Adv. Mater. 2021, 33, e2007239.
149. Byun, S. H.; Yun, J. H.; Heo, S. Y.; et al. Self-cooling gallium-based transformative electronics with a radiative cooler for reliable stiffness tuning in outdoor use. Adv. Sci. (Weinh). 2022, 9, e2202549.
150. Lin, Y.; Genzer, J.; Dickey, M. D. Attributes, fabrication, and applications of gallium-based liquid metal particles. Adv. Sci. (Weinh). 2020, 7, 2000192.
151. Lei, Z.; Gao, W.; Wu, P. Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting. Joule 2021, 5, 2211-22.
152. Ding, T.; Zhou, Y.; Wang, X.; et al. All-soft and stretchable thermogalvanic gel fabric for antideformity body heat harvesting wearable. Adv. Energy. Mater. 2021, 11, 2102219.
153. Xu, C.; Sun, Y.; Zhang, J.; Xu, W.; Tian, H. Adaptable and wearable thermocell based on stretchable hydrogel for body heat harvesting. Adv. Energy. Mater. 2022, 12, 2201542.
154. Sun, M.; Qian, Q.; Tang, G.; et al. Enhanced thermoelectric properties of polycrystalline Bi2Te3 core fibers with preferentially oriented nanosheets. APL. Mater. 2018, 6, 036103.
155. Fu, Y.; Kang, S.; Gu, H.; et al. Superflexible inorganic Ag2Te0.6S0.4 fiber with high thermoelectric performance. Adv. Sci. (Weinh). 2023, 10, e2207642.
156. Sun, Y.; Sheng, P.; Di, C.; et al. Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv. Mater. 2012, 24, 932-7.
157. Li, J.; Huckleby, A. B.; Zhang, M. Polymer-based thermoelectric materials: A review of power factor improving strategies. J. Materiomics. 2022, 8, 204-20.
158. Lee, C.; Park, Y.; Hashimoto, H. Effect of nonstoichiometry on the thermoelectric properties of a Ag2Se alloy prepared by a mechanical alloying process. J. Appl. Phys. 2007, 101, 024920.
159. Kim, S. I.; Lee, K. H.; Mun, H. A.; et al. Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015, 348, 109-14.
160. Deng, T.; Gao, Z.; Qiu, P.; et al. High thermoelectric power factors in plastic/ductile bulk SnSe2-based crystals. Adv. Mater. 2024, 36, e2304219.
161. Liu, J.; Xing, T.; Gao, Z.; et al. Enhanced thermoelectric performance in ductile Ag2S-based materials via doping iodine. Appl. Phys. Lett. 2021, 119, 121905.
162. Liang, X.; Chen, C. Ductile inorganic amorphous/crystalline composite Ag4TeS with phonon-glass electron-crystal transport behavior and excellent stability of high thermoelectric performance on plastic deformation. Acta. Materialia. 2021, 218, 117231.
163. He, S.; Li, Y.; Liu, L.; et al. Semiconductor glass with superior flexibility and high room temperature thermoelectric performance. Sci. Adv. 2020, 6, eaaz8423.
164. Kim, G. H.; Shao, L.; Zhang, K.; Pipe, K. P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 2013, 12, 719-23.
165. Lu, Y.; Ding, Y.; Qiu, Y.; et al. Good Performance and Flexible PEDOT:PSS/Cu2Se Nanowire Thermoelectric Composite Films. ACS. Appl. Mater. Interfaces. 2019, 11, 12819-29.
166. Qu, S.; Yao, Q.; Wang, L.; et al. Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy. NPG. Asia. Mater. 2016, 8, e292-e292.
167. Liu, Y.; Aziguli, H.; Zhang, B.; et al. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 2018, 562, 96-100.
168. Li, F.; Lin, D.; Chen, Z.; et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 2018, 17, 349-54.
169. Liang, J.; Qiu, P.; Zhu, Y.; et al. Crystalline structure-dependent mechanical and thermoelectric performance in Ag2Se1-xSx system. Research. (Wash. D. C). 2020, 2020, 6591981.
170. Liang, J.; Liu, J.; Qiu, P.; et al. Modulation of the morphotropic phase boundary for high-performance ductile thermoelectric materials. Nat. Commun. 2023, 14, 8442.
171. Waqar, M.; Wu, H.; Chen, J.; Yao, K.; Wang, J. Evolution from lead-based to lead-free piezoelectrics: engineering of lattices, domains, boundaries, and defects leading to giant response. Adv. Mater. 2022, 34, e2106845.
172. Li, C.; Jiang, F.; Liu, C.; et al. A simple thermoelectric device based on inorganic/organic composite thin film for energy harvesting. Chem. Eng. J. 2017, 320, 201-10.
173. Li, Z.; Sun, H.; Hsiao, C.; et al. A free-standing high-output power density thermoelectric device based on structure-ordered PEDOT:PSS. Adv. Elect. Materials. 2018, 4, 1700496.
174. Varghese, T.; Hollar, C.; Richardson, J.; et al. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals. Sci. Rep. 2016, 6, 33135.
175. Wang, L.; Zhang, Z.; Geng, L.; et al. Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics. Energy. Environ. Sci. 2018, 11, 1307-17.
176. Gao, Z.; Wei, T. R.; Deng, T.; et al. High-throughput screening of 2D van der Waals crystals with plastic deformability. Nat. Commun. 2022, 13, 7491.
177. Wei, S.; Zhang, Y.; Lv, H.; Deng, L.; Chen, G. SWCNT network evolution of PEDOT:PSS/SWCNT composites for thermoelectric application. Chem. Eng. J. 2022, 428, 131137.
178. Thomas, T. H.; Harkin, D. J.; Gillett, A. J.; et al. Short contacts between chains enhancing luminescence quantum yields and carrier mobilities in conjugated copolymers. Nat. Commun. 2019, 10, 2614.
179. Venkateshvaran, D.; Nikolka, M.; Sadhanala, A.; et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 2014, 515, 384-8.
180. Yang, K.; Zhang, X.; Harbuzaru, A.; et al. Stable organic diradicals based on fused quinoidal oligothiophene imides with high electrical conductivity. J. Am. Chem. Soc. 2020, 142, 4329-40.
181. Zhou, Y.; Wang, Z.; Yao, Z.; et al. Systematic investigation of solution-state aggregation effect on electrical conductivity in doped conjugated polymers. CCS. Chem. 2021, 3, 2994-3004.
182. Naab, B. D.; Guo, S.; Olthof, S.; et al. Mechanistic study on the solution-phase n-doping of 1,3-dimethyl-2-aryl-2,3-dihydro-1H-benzoimidazole derivatives. J. Am. Chem. Soc. 2013, 135, 15018-25.
183. Lu, Y.; Yu, Z. D.; Un, H. I.; et al. Persistent conjugated backbone and disordered lamellar packing impart polymers with efficient n-doping and high conductivities. Adv. Mater. 2021, 33, e2005946.
184. Lu, Y.; Wang, J. Y.; Pei, J. Achieving efficient n-doping of conjugated polymers by molecular dopants. Acc. Chem. Res. 2021, 54, 2871-83.
185. Yu, Z. D.; Lu, Y.; Wang, Z. Y.; et al. High n-type and p-type conductivities and power factors achieved in a single conjugated polymer. Sci. Adv. 2023, 9, eadf3495.
186. Yang, C. Y.; Ding, Y. F.; Huang, D.; et al. A thermally activated and highly miscible dopant for n-type organic thermoelectrics. Nat. Commun. 2020, 11, 3292.
187. Liu, H.; Yin, X.; Chi, C.; et al. Direct printing of flexible multilayer composite electrodes based on electrohydrodynamic printing. ACS. Appl. Electron. Mater. 2024, 6, 724-36.
188. Ding, X.; Liow, C. H.; Zhang, M.; et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 2014, 136, 15684-93.
189. Wang, J.; Li, Y.; Deng, L.; et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 2017, 29.
190. Jiang, Y.; Li, J.; Zhen, X.; Xie, C.; Pu, K. Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study. Adv. Mater. 2018, 30, e1705980.
191. Chen, C.; Li, Y.; Song, J.; et al. Highly flexible and efficient solar steam generation device. Adv. Mater. 2017, 29.
192. Jun, Y. S.; Wu, X.; Ghim, D.; Jiang, Q.; Cao, S.; Singamaneni,. photothermal membrane water treatment for two worlds. Acc. Chem. Res. 2019, 52, 1215-25.
193. Yang, M.; Tan, C. F.; Lu, W.; Zeng, K.; Ho, G. W. Spectrum tailored defective 2D semiconductor nanosheets aerogel for full-spectrum-driven photothermal water evaporation and photochemical degradation. Adv. Funct. Materials. 2020, 30, 2004460.
194. Zhang, Q.; Huang, A.; Ai, X.; et al. Transparent power-generating windows based on solar-thermal-electric conversion. Adv. Energy. Mater. 2021, 11, 2101213.
195. Lu, Y.; Xiao, X.; Fu, J.; et al. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 2019, 355, 532-9.
196. Chang, J.; Shi, L.; Zhang, M.; et al. Tailor-made white photothermal fabrics: a bridge between pragmatism and aesthetic. Adv. Mater. 2023, 35, e2209215.
197. Zhuo, S.; Jiang, W.; Dong, Z. Y.; et al. Large-area nanofiber membrane of NIR photothermal Cs0.32WO3 for flexible and all-weather solar thermoelectric generation. Chem. Eng. J. 2024, 479, 147571.
198. Sun, Z.; Hu, Y.; Wei, C.; et al. Transparent, photothermal and stretchable alginate-based hydrogels for remote actuation and human motion sensing. Carbohydr. Polym. 2022, 293, 119727.
199. Xiang, D.; Liu, L.; Chen, X.; et al. High-performance fiber strain sensor of carbon nanotube/thermoplastic polyurethane@styrene butadiene styrene with a double percolated structure. Front. Mater. Sci. 2022, 16, 586.
200. Xiang, D.; Zhang, X.; Harkin-jones, E.; et al. Synergistic effects of hybrid conductive nanofillers on the performance of 3D printed highly elastic strain sensors. Compos. Part. A. Appl. Sci. Manuf. 2020, 129, 105730.
201. Wan, B.; Liu, N.; Zhang, Z.; et al. Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels. Carbohydr. Polym. 2023, 314, 120929.
202. Sun, X.; Liang, Y.; Ye, L.; Liang, H. An extremely tough and ionic conductive natural-polymer-based double network hydrogel. J. Mater. Chem. B. 2021, 9, 7751-9.
203. Gao, T.; Li, N.; Yang, Y.; et al. Mechanical reliable, NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life. J. Energy. Chem. 2024, 92, 63-73.
204. Xue, C.; Xu, X.; Zhang, L.; et al. Self-healing/pH-responsive/inherently antibacterial polysaccharide-based hydrogel for a photothermal strengthened wound dressing. Colloids. Surf. B. Biointerfaces. 2022, 218, 112738.
205. Hou, M.; Yu, M.; Liu, W.; et al. Mxene hybrid conductive hydrogels with mechanical flexibility, frost-resistance, photothermoelectric conversion characteristics and their multiple applications in sensing. Chem. Eng. J. 2024, 483, 149299.
206. Yang, H.; Li, J.; Xiao, X.; et al. Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nat. Commun. 2022, 13, 5311.
207. Armstrong, L. E.; Casa, D. J.; Belval, L. N. Metabolism, bioenergetics and thermal physiology: influences of the human intestinal microbiota. Nutr. Res. Rev. 2019, 32, 205-17.
208. Borghini, S.; Tassi, S.; Chiesa, S.; et al. Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis. Rheum. 2011, 63, 830-9.
209. Zeng, P.; Bengtsson, C.; Klareskog, L.; Alfredsson, L. Working in cold environment and risk of developing rheumatoid arthritis: results from the Swedish EIRA case-control study. RMD. Open. 2017, 3, e000488.
210. Park, C.; Kim, M. S.; Kim, H. H.; et al. Stretchable conductive nanocomposites and their applications in wearable devices. Appl. Phys. Rev. 2022, 9, 021312.
211. Pang, G.; Yang, G.; Pang, Z. Review of robot skin: a potential enabler for safe collaboration, immersive teleoperation, and affective interaction of future collaborative robots. IEEE. Trans. Med. Robot. Bionics. 2021, 3, 681-700.
212. Yi, N.; Gao, Y.; Verso, A. L. J.; et al. Fabricating functional circuits on 3D freeform surfaces via intense pulsed light-induced zinc mass transfer. Mater. Today. (Kidlington). 2021, 50, 24-34.
213. Chen, A.; Zhang, C.; Zhu, G.; Wang, Z. L. Polymer materials for high-performance triboelectric nanogenerators. Adv. Sci. (Weinh). 2020, 7, 2000186.
214. Luo, Y.; Zhao, L.; Luo, G.; et al. All electrospun fabrics based piezoelectric tactile sensor. Nanotechnology 2022, 33, 415502.
215. Yi, Y.; Wang, B.; Liu, X.; Li, C. Flexible piezoresistive strain sensor based on CNTs–polymer composites: a brief review. Carbon. Lett. 2022, 32, 713-26.
216. Park, S.; Heo, S. W.; Lee, W.; et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 2018, 561, 516-21.
217. Yang, Y.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465-91.
218. Cao, X.; Xiong, Y.; Sun, J.; Zhu, X.; Sun, Q.; Wang, Z. L. Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial intelligence. Adv. Funct. Materials. 2021, 31, 2102983.
219. Zhang, J.; Bai, C.; Wang, Z.; Liu, X.; Li, X.; Cui, X. Low-grade thermal energy harvesting and self-powered sensing based on thermogalvanic hydrogels. Micromachines. (Basel). 2023, 14, 155.
220. Liu, Y.; Cui, M.; Ling, W.; et al. Thermo-electrochemical cells for heat to electricity conversion: from mechanisms, materials, strategies to applications. Energy. Environ. Sci. 2022, 15, 3670-87.
221. Shi, X.; Ma, L.; Li, Y.; et al. Double hydrogen-bonding reinforced high-performance supramolecular hydrogel thermocell for self-powered sensing remote-controlled by light. Adv. Funct. Materials. 2023, 33, 2211720.
222. Li, X.; Li, J.; Wang, T.; et al. Self-powered respiratory monitoring strategy based on adaptive dual-network thermogalvanic hydrogels. ACS. Appl. Mater. Interfaces. 2022, 14, 48743-51.
223. Cacicedo, M. L.; Castro, M. C.; Servetas, I.; et al. Progress in bacterial cellulose matrices for biotechnological applications. Bioresour. Technol. 2016, 213, 172-80.
224. Li, J.; Chen, S.; Han, Z.; et al. High performance bacterial cellulose organogel-based thermoelectrochemical cells by organic solvent-driven crystallization for body heat harvest and self-powered wearable strain sensors. Adv. Funct. Materials. 2023, 33, 2306509.
225. Zhou, Z.; Chen, K.; Li, X.; et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571-8.
226. Li, G.; Hu, Y.; Chen, J.; et al. Thermoelectric and photoelectric dual modulated sensors for human internet of things application in accurate fire recognition and warning. Adv. Funct. Materials. 2023, 33, 2303861.
227. Li, L.; Wang, D.; Zhang, D.; et al. Near-infrared light triggered self-powered mechano-optical communication system using wearable photodetector textile. Adv. Funct. Materials. 2021, 31, 2104782.
228. Ding, J.; Zhao, W.; Jin, W.; Di, C.; Zhu, D. Advanced thermoelectric materials for flexible cooling application. Adv. Funct. Materials. 2021, 31, 2010695.
229. Hsu, A. L.; Herring, P. K.; Gabor, N. M.; et al. Graphene-based thermopile for thermal imaging applications. Nano. Lett. 2015, 15, 7211-6.
230. Gao, F.; Min, P.; Ma, Q.; et al. Multifunctional thermoelectric temperature sensor for noncontact information transfer and tactile sensing in human-machine interaction. Adv. Funct. Materials. 2024, 34, 2309553.
231. Zakery, A.; Elliott, S. Optical properties and applications of chalcogenide glasses: a review. J. Non-Cryst. Solids. 2003, 330, 1-12.
232. Fu, Y.; Kang, S.; Xiang, G.; et al. Ultraflexible temperature-strain dual-sensor based on chalcogenide glass-polymer film for human-machine interaction. Adv. Mater. 2024, 36, e2313101.
233. Wang, W.; Jiang, Y.; Zhong, D.; et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 2023, 380, 735-42.
234. Jung, D.; Lim, C.; Shim, H. J.; et al. Highly conductive and elastic nanomembrane for skin electronics. Science 2021, 373, 1022-6.
235. Chen, C.; Xu, J. L.; Wang, Q.; et al. Biomimetic multimodal receptors for comprehensive artificial human somatosensory system. Adv. Mater. 2024, 36, e2313228.