REFERENCES
1. Laboratory LLN. Americans used more clean energy in 2016. Available from: https://www.llnl.gov/article/43246/americans-used-more-clean-energy-2016. [Last accessed on 13 Sep 2017].
2. Saleemi M, Toprak MS, Li S, Johnsson M, Muhammed M. Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3). J Mater Chem 2012;22:725-30.
3. Li JQ, Lu ZW, Wang CY, Li Y, Liu FS, Ao WQ. Enhanced thermoelectric properties of Sn0.8Pb0.2Te alloy by Mn substitution. Journal of Elec Materi 2016;45:2879-85.
4. Dong G, Zhu Y, Chen L. Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering. J Mater Chem 2010;20:1976.
5. Goldsmid HJ. Bismuth telluride and its alloys as materials for thermoelectric generation. Materials (Basel) 2014;7:2577-92.
6. Brostow W, Datashvili T, Hagg Lobland HE, et al. Bismuth telluride-based thermoelectric materials: coatings as protection against thermal cycling effects. J Mater Res 2012;27:2930-6.
7. Liu F, Gong Z, Huang M, Ao W, Li Y, Li J. Enhanced thermoelectric properties of β-Cu2Se by incorporating CuGaSe2. J Alloys Compd 2016;688:521-6.
8. Li J, Tang X, Li H, Yan Y, Zhang Q. Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline. Synthetic Metals 2010;160:1153-8.
9. Bubnova O, Khan ZU, Malti A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat Mater 2011;10:429-33.
10. Bounioux C, Díaz-chao P, Campoy-quiles M, et al. Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor. Energy Environ Sci 2013;6:918.
11. Zhang L, Lin S, Hua T, Huang B, Liu S, Tao X. Fiber-based thermoelectric generators: materials, device structures, fabrication, characterization, and applications. Adv Energy Mater 2018;8:1700524.
12. Wu H, Huang Y, Xu F, Duan Y, Yin Z. Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv Mater 2016;28:9881-919.
13. Beretta D, Massetti M, Lanzani G, Caironi M. Thermoelectric characterization of flexible micro-thermoelectric generators. Rev Sci Instrum 2017;88:015103.
14. Bahk J, Fang H, Yazawa K, Shakouri A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J Mater Chem C 2015;3:10362-74.
15. Yao CJ, Zhang HL, Zhang Q. Recent progress in thermoelectric materials based on conjugated polymers. Polymers (Basel) 2019;11:107.
16. Xia B, Shi X, Zhang L, et al. Vertically designed high-performance and flexible thermoelectric generator based on optimized PEDOT:PSS/SWCNTs composite films. Chem Eng J 2024;486:150305.
17. Wang Y, Dai X, Pan J, et al. Solvent effect induced charge polarity switching from p- to n-type in polyaniline and carbon nanotube hybrid films with a high thermoelectric power factor. J Mater Chem A 2024;12:18948-57.
18. Huang J, Liu X, Du Y. Highly efficient and wearable thermoelectric composites based on carbon nanotube film/polyaniline. Journal of Materiomics 2024;10:173-8.
19. Pernstich KP, Rössner B, Batlogg B. Field-effect-modulated seebeck coefficient in organic semiconductors. Nat Mater 2008;7:321-5.
20. Germs WC, Guo K, Janssen RA, Kemerink M. Unusual thermoelectric behavior indicating a hopping to bandlike transport transition in pentacene. Phys Rev Lett 2012;109:016601.
21. Nonoguchi Y, Nakano M, Murayama T, et al. Simple salt-coordinated n-type nanocarbon materials stable in air. Adv Funct Materials 2016;26:3021-8.
22. Mistry KS, Larsen BA, Bergeson JD, et al. n-Type transparent conducting films of small molecule and polymer amine doped single-walled carbon nanotubes. ACS Nano 2011;5:3714-23.
23. Chandra B, Afzali A, Khare N, El-ashry MM, Tulevski GS. Stable charge-transfer doping of transparent single-walled carbon nanotube films. Chem Mater 2010;22:5179-83.
24. Hamid Elsheikh M, Shnawah DA, Sabri MFM, et al. A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew Sustain Energy Rev 2014;30:337-55.
25. Zhou D, Zhang H, Zheng H, et al. Recent advances and prospects of small molecular organic thermoelectric materials. Small 2022;18:e2200679.
28. Tritt TM, Subramanian MA. Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull 2006;31:188-98.
29. She X, Su X, Du H, et al. High thermoelectric performance of higher manganese silicides prepared by ultra-fast thermal explosion. J Mater Chem C 2015;3:12116-22.
31. Liu FS, Zheng JX, Huang MJ, et al. Enhanced thermoelectric performance of Cu2CdSnSe4 by Mn doping: experimental and first principles studies. Sci Rep 2014;4:5774.
32. Blackburn JL, Barnes TM, Beard MC, et al. Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. ACS Nano 2008;2:1266-74.
33. Barnes TM, Blackburn JL, van de Lagemaat J, Coutts TJ, Heben MJ. Reversibility, dopant desorption, and tunneling in the temperature-dependent conductivity of type-separated, conductive carbon nanotube networks. ACS Nano 2008;2:1968-76.
34. Nonoguchi Y, Ohashi K, Kanazawa R, et al. Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci Rep 2013;3:3344.
35. Blackburn JL, Ferguson AJ, Cho C, Grunlan JC. Carbon-nanotube-based thermoelectric materials and devices. Adv Mater 2018:30.
36. Kim T, Jang JG, Hong J. Enhanced thermoelectric performance of SWNT/organic small molecule (OSM) hybrid materials by tuning of the energy level of OSMs. J Mater Chem C 2020;8:12795-9.
37. Kim TH, Hong JI. Energy level modulation of small molecules enhances thermoelectric performances of carbon nanotube-based organic hybrid materials. ACS Appl Mater Interfaces 2022;14:55627-35.
38. Kim TH, Jang JG, Kim SH, Hong JI. Molecular engineering for enhanced thermoelectric performance of single-walled carbon nanotubes/π-conjugated organic small molecule hybrids. Adv Sci (Weinh) 2023;10:e2302922.
39. Zhu K, Hu Z, Chen G. Enhancement of thermoelectric property of carbon nanotubes by p-type doping with judicious molecular design of spiro-bifluorene derivatives. Compos Commun 2022;32:101166.
40. Yin X, Zhong F, Chen Z, et al. Manipulating the doping level via host-dopant synergism towards high performance n-type thermoelectric composites. Chemical Chem Eng J 2020;382:122817.
41. Gaul C, Hutsch S, Schwarze M, et al. Insight into doping efficiency of organic semiconductors from the analysis of the density of states in n-doped C60 and ZnPc. Nat Mater 2018;17:439-44.
42. Wei P, Menke T, Naab BD, Leo K, Riede M, Bao Z. 2-(2-Methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium iodide as a new air-stable n-type dopant for vacuum-processed organic semiconductor thin films. J Am Chem Soc 2012;134:3999-4002.
43. Bin Z, Li J, Wang L, Duan L. Efficient n-type dopants with extremely low doping ratios for high performance inverted perovskite solar cells. Energy Environ Sci 2016;9:3424-8.
44. Sugiura H, Kanazawa Y, Nomura K, Aoai T. Fine tuning of the fermi level of single-walled carbon nanotubes with onium salts and application for thermoelectric materials. Synthetic Metals 2020;259:116222.
45. Kim TH, Jang JG, Kim SH, Hong JI. Ambient-stable n-type carbon nanotube/organic small-molecule thermoelectrics enabled by energy level control. ACS Appl Mater Interfaces 2023;15:46872-80.
46. Wang Y, Nakano M, Michinobu T, Kiyota Y, Mori T, Takimiya K. Naphthodithiophenediimide-Benzobisthiadiazole-based polymers: versatile n-type materials for field-effect transistors and thermoelectric devices. Macromolecules 2017;50:857-64.
47. Qin S, Tan J, Qin J, et al. Benzothienobenzothiophene-based organic charge transfer complex and carbon nanotube composites for p-type and n-type thermoelectric materials and generators. Adv Elect Materials 2021;7:2100557.
48. Jang JG, Hong J. Alkyl chain engineering for enhancing the thermoelectric performance of single-walled carbon nanotubes - small organic molecule hybrid. ACS Appl Energy Mater 2022;5:13871-6.
49. Li P, Guo H, Xu H. Environmentally friendly ionic side chain organic small molecule/single-walled carbon nanotube composites have high TE performance. J Mater Sci 2022;57:18524-34.
50. Jang JG, Kim T, Kim SH, Hong J. Enhancement of thermoelectric performance of single-walled carbon nanotubes/small organic molecule hybrids by fine-tuning of the alkyl chain length. ACS Appl Electron Mater 2023;5:5573-9.
51. Zhou Y, Yin X, Liu Y, et al. Significantly enhanced power factors of p-type carbon nanotube-based composite films by tailoring the peripheral substituents in porphyrin. ACS Sustainable Chem Eng 2019;7:11832-40.
52. Yin X, Peng Y, Luo J, et al. Tailoring the framework of organic small molecule semiconductors towards high-performance thermoelectric composites via conglutinated carbon nanotube webs. J Mater Chem A 2018;6:8323-30.
53. Gao C, Liu Y, Gao Y, et al. High-performance n-type thermoelectric composites of acridones with tethered tertiary amines and carbon nanotubes. J Mater Chem A 2018;41:20161-9.
54. Li B, Mao Y, Mao X, et al. Enhancement of the electrical conductivity and thermoelectric performance of single-walled carbon nanotubes by the introduction of conjugated small molecules with cation groups. ACS Appl Energy Mater 2020;3:11947-55.
55. Jeon Y, Jang JG, Kim SH, Hong J. Twisted small organic molecules for high thermoelectric performance of single-walled carbon nanotubes/small organic molecule hybrids through mild charge transfer interactions. J Mater Chem C 2021;9:8483-8.
56. Wei L, Huang H, Gao C, Liu D, Wang L. Novel butterfly-shaped organic semiconductor and single-walled carbon nanotube composites for high performance thermoelectric generators. Mater Horiz 2021;8:1207-15.
57. Zhang L, Jin J, Huang S, et al. Cross-conjugated spiro molecules and single-walled carbon nanotubes composite for high-performance organic thermoelectric materials and generators. Chem Eng J 2021;426:131859.
58. Mao X, Li Z, Liu Y, et al. Tuning the structure of borane-nitrogen derivatives towards high-performance carbon nanotubes-based n-type thermoelectric materials. Chem Eng J 2021;405:126616.
59. Nie X, Mao X, Li X, et al. Combined effect of n-methyl pyrrolidone and ferrocene derivatives on thermoelectric performance of n-type single-wall carbon nanotube-based composites. Chem Eng J 2021;421:129718.
60. Suzuki H, Kametaka J, Nakahori S, et al. N-DMBI doping of carbon nanotube yarns for achieving high n-type thermoelectric power factor and figure of merit. Small Methods 2024;8:e2301387.
61. Wang Y, Li Q, Wang J, et al. Understanding the solvent effects on polarity switching and thermoelectric properties changing of solution-processable n-type single-walled carbon nanotube films. Nano Energy 2022;93:106804.
62. Yu C, Murali A, Choi K, Ryu Y. Air-stable fabric thermoelectric modules made of n- and p-type carbon nanotubes. Energy Environ Sci 2012;5:9481.
63. Xiao J, Zhang Z, Wang S, Gao C, Wang L. High-performance thermoelectric generator based on n-type flexible composite and its application in self-powered temperature sensor. Chem Eng J 2024;479:147569.
64. Fukumaru T, Fujigaya T, Nakashima N. Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property. Sci Rep 2015;5:7951.
65. Nonoguchi Y, Iihara Y, Ohashi K, Murayama T, Kawai T. Air-tolerant fabrication and enhanced thermoelectric performance of n-type single-walled carbon nanotubes encapsulating 1,1’-bis(diphenylphosphino)ferrocene. Chem Asian J 2016;11:2423-7.
66. Hata S, Shiraishi M, Yasuda S, et al. Green route for fabrication of water-treatable thermoelectric generators. Energy Mater Adv 2022;2022:2022/9854657.
67. Hata S, Maeshiro K, Shiraishi M, et al. Water-resistant organic thermoelectric generator with > 10 μW output. Carbon Energy 2022;5:e285.
68. Nakashima Y, Nakashima N, Fujigaya T. Development of air-stable n-type single-walled carbon nanotubes by doping with 2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1 H -benzo[d]imidazole and their thermoelectric properties. Synth Met 2017;225:76-80.
69. He G, Nie X, Cao G, et al. Achieving air-stable n-type single-walled carbon nanotubes with high thermoelectric performance by doping with polyethylene glycol and N,N-dimethylferrocenemethylamine. Compos Sci Technol 2023;238:110043.
70. Wang Y, Chen Z, Huang H, Wang D, Liu D, Wang L. Organic radical compound and carbon nanotube composites with enhanced electrical conductivity towards high-performance p-type and n-type thermoelectric materials. J Mater Chem A 2020;8:24675-84.
71. Liang J, Sun S, Huang S, et al. Boosting thermoelectric performance of carbon nanotube-based materials and devices by radical-containing molecules. Mater Today Commun 2023;35:106317.
72. Wu G, Zhang ZG, Li Y, Gao C, Wang X, Chen G. Exploring high-performance n-type thermoelectric composites using amino-substituted rylene dimides and carbon nanotubes. ACS Nano 2017;11:5746-52.
73. Cheng X, Wang X, Chen G. A convenient and highly tunable way to n-type carbon nanotube thermoelectric composite film using common alkylammonium cationic surfactant. J Mater Chem A 2018;6:19030-7.
74. Kang YH, Lee Y, Lee C, Cho SY. Influence of the incorporation of small conjugated molecules on the thermoelectric properties of carbon nanotubes. Org Electron 2018;57:165-70.
75. Khongthong J, Raginov NI, Khabushev EM, et al. Aerosol doping of SWCNT films with p- and n-type dopants for optimizing thermoelectric performance. Carbon 2024;218:118670.
76. Serrano-Claumarchirant JF, Brotons-Alcázar I, Culebras M, et al. Electrochemical synthesis of an organic thermoelectric power generator. ACS Appl Mater Interfaces 2020;12:46348-56.
77. Khan AAP, Khan A, Asiri AM, Alam MM, Rahman MM, Shaban M. Surfactant-assisted graphene oxide/methylaniline nanocomposites for lead ionic sensor development for the environmental remediation in real sample matrices. Int J Environ Sci Technol 2019;16:8461-70.
78. Feng X, Li R, Ma Y, et al. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv Funct Materials 2011;21:2989-96.
79. Culebras M, López AM, Gómez CM, Cantarero A. Thermal sensor based on a polymer nanofilm. Sens Actuators A Phys 2016;239:161-5.
80. Tong L, Jiang C, Cai K, Wei P. High-performance and freestanding PPy/Ti3C2Tx composite film for flexible all-solid-state supercapacitors. J Power Sources 2020;465:228267.
81. Liu Y, Dai Q, Zhou Y, et al. High-performance n-type carbon nanotube composites: improved power factor by optimizing the acridine scaffold and tailoring the side chains. ACS Appl Mater Interfaces 2019;11:29320-9.
82. Cao G, Nie X, Ren Z, et al. Simultaneously achieving green p- and n-type single-walled carbon nanotube composites by natural amino acids with high performance for thermoelectrics. ACS Sustainable Chem Eng 2022;10:12009-15.
83. Kim SL, Choi K, Tazebay A, Yu C. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity. ACS Nano 2014;8:2377-86.
84. Wu G, Gao C, Chen G, Wang X, Wang H. High-performance organic thermoelectric modules based on flexible films of a novel n-type single-walled carbon nanotube. J Mater Chem A 2016;4:14187-93.