REFERENCES

1. Upton, B. M.; Kasko, A. M. Strategies for the conversion of lignin to high-value polymeric materials: peview and perspective. Chem. Rev. 2016, 116, 2275-306.

2. Zhang, Z.; Huber, G. W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem. Soc. Rev. 2018, 47, 1351-90.

3. Möller, M.; Schröder, U. Hydrothermal production of furfural from xylose and xylan as model compounds for hemicelluloses. RSC. Adv. 2013, 3, 22253.

4. Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.

5. Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev. 2012, 41, 8075-98.

6. Deng, W.; Feng, Y.; Fu, J.; et al. Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green. Energy. . Environ. 2023, 8, 10-114.

7. Wyman, C. E.; Dale, B. E.; Elander, R. T.; Holtzapple, M.; Ladisch, M. R.; Lee, Y. Y. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 2005, 96, 1959-66.

8. Klemm, D.; Heublein, B.; Fink, H. P.; Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. Engl. 2005, 44, 3358-93.

9. Huang, Y.; Fu, Y. Hydrolysis of cellulose to glucose by solid acid catalysts. Green. Chem. 2013, 15, 1095.

10. Wu, X.; Luo, N.; Xie, S.; et al. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem. Soc. Rev. 2020, 49, 6198-223.

11. Fang, R.; Dhakshinamoorthy, A.; Li, Y.; Garcia, H. Metal organic frameworks for biomass conversion. Chem. Soc. Rev. 2020, 49, 3638-87.

12. Bozell, J. J.; Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green. Chem. 2010, 12, 539.

13. Motagamwala, A. H.; Huang, K.; Maravelias, C. T.; Dumesic, J. A. Solvent system for effective near-term production of hydroxymethylfurfural (HMF) with potential for long-term process improvement. Energy. Environ. Sci. 2019, 12, 2212-22.

14. Liu, X.; Duan, X.; Wei, W.; Wang, S.; Ni, B. Photocatalytic conversion of lignocellulosic biomass to valuable products. Green. Chem. 2019, 21, 4266-89.

15. Mondelli, C.; Gözaydın, G.; Yan, N.; Pérez-Ramírez, J. Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chem. Soc. Rev. 2020, 49, 3764-82.

16. Abreu, T. C.; Ciotonea, C.; Le, V. A.; et al. Optimization of catalyst activity and stability in the m-cresol hydrodeoxygenation through Ni particle size control. Appl. Catal. B. Environ. 2023, 338, 123030.

17. Lim, K. R. G.; Kaiser, S. K.; Wu, H.; et al. Nanoparticle proximity controls selectivity in benzaldehyde hydrogenation. Nat. Catal. 2024, 7, 172-84.

18. Qiao, B.; Wang, A.; Yang, X.; et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-41.

19. Liu, D.; He, Q.; Ding, S.; Song, L. Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv. Energy. Mater. 2020, 10, 2001482.

20. Zhou, X.; Shen, Q.; Yuan, K.; et al. Unraveling charge state of supported Au single-atoms during CO oxidation. J. Am. Chem. Soc. 2018, 140, 554-7.

21. Xue, J.; Dong, X.; Liu, C.; et al. Turning copper into an efficient and stable CO evolution catalyst beyond noble metals. Nat. Commun. 2024, 15, 5998.

22. Zhang, F.; Zhu, Y.; Lin, Q.; Zhang, L.; Zhang, X.; Wang, H. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy. Environ. Sci. 2021, 14, 2954-3009.

23. Zhang, L.; Ren, Y.; Liu, W.; Wang, A.; Zhang, T. Single-atom catalyst: a rising star for green synthesis of fine chemicals. Natl. Sci. Rev. 2018, 5, 653-72.

24. Lu, Y.; Zhang, Z.; Wang, H.; Wang, Y. Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2. Appl. Catal. B. Environ. 2021, 292, 120162.

25. Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Lin, Y. Single-atom electrocatalysts. Angew. Chem. Int. Ed. Engl. 2017, 56, 13944-60.

26. Su, J.; Ge, R.; Dong, Y.; Hao, F.; Chen, L. Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion. J. Mater. Chem. A. 2018, 6, 14025-42.

27. Wang, Y.; Su, H.; He, Y.; et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 2020, 120, 12217-314.

28. Gao, C.; Low, J.; Long, R.; Kong, T.; Zhu, J.; Xiong, Y. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 2020, 120, 12175-216.

29. Chen, C.; Li, J.; Tan, X.; et al. Harnessing single-atom catalysts for CO2 electroreduction: a review of recent advances. EES. Catal. 2024, 2, 71-93.

30. Wang, H.; Tong, Y.; Chen, P. Microenvironment regulation strategies of single-atom catalysts for advanced electrocatalytic CO2 reduction to CO. Nano. Energy. 2023, 118, 108967.

31. Yuan, W.; Ma, Y.; Wu, H.; Cheng, L. Single-atom catalysts for CO oxidation, CO2 reduction, and O-2 electrochemistry. J. Energy. Chem. 2022, 69, 347.

32. Sun, Q.; Jia, C.; Zhao, Y.; Zhao, C. Single atom-based catalysts for electrochemical CO2 reduction. Chinese. J. Catal. 2022, 43, 1547-97.

33. Li, L.; Huang, B.; Tang, X.; et al. Recent developments of microenvironment engineering of single-atom catalysts for oxygen reduction toward desired activity and selectivity. Adv. Funct. Mater. 2021, 31, 2103857.

34. Yan, L.; Li, P.; Zhu, Q.; et al. Atomically precise electrocatalysts for oxygen reduction reaction. Chem 2023, 9, 280-342.

35. Jiang, F.; Li, Y.; Pan, Y. Design principles of single-atom catalysts for oxygen evolution reaction: from targeted structures to active sites. Adv. Mater. 2024, 36, e2306309.

36. Iqbal, S.; Safdar, B.; Hussain, I.; Zhang, K.; Chatzichristodoulou, C. Trends and prospects of bulk and single-atom catalysts for the oxygen evolution reaction. Adv. Energy. Mater. 2023, 13, 2203913.

37. De, S.; Burange, A. S.; Luque, R. Conversion of biomass-derived feedstocks into value-added chemicals over single-atom catalysts. Green. Chem. 2022, 24, 2267-86.

38. Chen, J.; Xiao, Y.; Guo, F.; Li, K.; Huang, Y.; Lu, Q. Single-atom metal catalysts for catalytic chemical conversion of biomass to chemicals and fuels. ACS. Catal. 2024, 14, 5198-226.

39. Tian, X.; Wang, Y.; Zeng, Z.; et al. Research progress on the role of common metal catalysts in biomass pyrolysis: a state-of-the-art review. Green. Chem. 2022, 24, 3922-42.

40. Yang, P.; Xia, Q.; Liu, X.; Wang, Y. Catalytic transfer hydrogenation/hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Ni-Co/C catalyst. Fuel 2017, 187, 159-66.

41. Wang, X.; Liu, Y.; Liang, X. Hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over supported Pt-Co bimetallic catalysts under mild conditions. Green. Chem. 2018, 20, 2894-902.

42. Gan, T.; Liu, Y.; He, Q.; Zhang, H.; He, X.; Ji, H. Facile synthesis of kilogram-Scale Co-alloyed Pt single-atom catalysts via ball milling for hydrodeoxygenation of 5-hydroxymethylfurfural. ACS. Sustainable. Chem. Eng. 2020, 8, 8692-9.

43. Meng, G.; Ji, K.; Zhang, W.; et al. Tandem catalyzing the hydrodeoxygenation of 5-hydroxymethylfurfural over a Ni3Fe intermetallic supported Pt single-atom site catalyst. Chem. Sci. 2021, 12, 4139-46.

44. Wang, L.; Yang, Y.; Shi, Y.; et al. Single-atom catalysts with metal-acid synergistic effect toward hydrodeoxygenation tandem reactions. Chem. Catal. 2023, 3, 100483.

45. Li, S.; Dong, M.; Yang, J.; et al. Selective hydrogenation of 5-(hydroxymethyl)furfural to 5-methylfurfural over single atomic metals anchored on Nb2O5. Nat. Commun. 2021, 12, 584.

46. Yang, S.; Wu, C.; Wang, J.; et al. Metal single-atom and nanoparticle double-active-site relay catalysts: design, preparation, and application to the oxidation of 5-hydroxymethylfurfural. ACS. Catal. 2022, 12, 971-81.

47. Zhang, M.; Ma, H.; Liu, X.; et al. Control in local coordination environment boosting activating molecular oxygen with an atomically dispersed binary Mn-Co catalyst. ACS. Appl. Mater. Interfaces. 2022, 14, 18539-49.

48. Zhang, C.; Chen, L.; Cheng, H.; Zhu, X.; Qi, Z. Atomically dispersed Pd catalysts for the selective hydrogenation of succinic acid to γ-butyrolactone. Catal. Today. 2016, 276, 55-61.

49. Liu, W. J.; Zhou, X.; Min, Y.; et al. Engineering of local coordination microenvironment in single-atom catalysts enabling sustainable conversion of biomass into a broad range of amines. Adv. Mater. 2024, 36, e2305924.

50. Sun, X.; Zhao, Y.; Chang, K.; et al. 1T-phase MoS2 edge-anchored Pt1-S3 active site boosting selective hydrogenation of biomass-derived maleic anhydride. Rare. Met. 2023, 42, 2658-69.

51. Han, Y.; Dai, J.; Xu, R.; et al. Notched-polyoxometalate strategy to fabricate atomically dispersed Ru catalysts for biomass conversion. ACS. Catal. 2021, 11, 2669-75.

52. Shao, S.; Yang, Y.; Sun, K.; et al. Electron-rich ruthenium single-atom alloy for aqueous levulinic acid hydrogenation. ACS. Catal. 2021, 11, 12146-58.

53. Gao, J.; Feng, L.; Ma, R.; et al. Cobalt single-atom catalysts for domino reductive amination and amidation of levulinic acid and related molecules to N-heterocycles. Chem. Catal. 2022, 2, 178-94.

54. Ji, N.; Zhang, T.; Zheng, M.; et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew. Chem. Int. Ed. Engl. 2008, 47, 8510-3.

55. Yang, C.; Miao, Z.; Zhang, F.; et al. Hydrogenolysis of methyl glycolate to ethanol over a Pt-Cu/SiO 2 single-atom alloy catalyst: a further step from cellulose to ethanol. Green. Chem. 2018, 20, 2142-50.

56. Liu, W.; Chen, Y.; Qi, H.; et al. A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew. Chem. Int. Ed. Engl. 2018, 57, 7071-5.

57. Zhang, L.; Meng, G.; Zhang, W.; et al. Oriented conversion of a LA/HMF mixture to GVL and FDCA in a biphasic solvent over a Ru single-atom/nanoparticle dual-site catalyst. ACS. Catal. 2023, 13, 2268-76.

58. Fu, J.; Lym, J.; Zheng, W.; et al. C-O bond activation using ultralow loading of noble metal catalysts on moderately reducible oxides. Nat. Catal. 2020, 3, 446-53.

59. Ishida, T.; Honma, T.; Nakada, K.; et al. Pd-catalyzed decarbonylation of furfural: elucidation of support effect on Pd size and catalytic activity using in-situ XAFS. J. Catal. 2019, 374, 320-7.

60. Tian, S.; Gong, W.; Chen, W.; et al. Regulating the catalytic performance of single-atomic-site Ir catalyst for biomass conversion by metal-support interactions. ACS. Catal. 2019, 9, 5223-30.

61. Zhu, Y.; Zhao, W.; Zhang, J.; et al. Selective activation of C-OH, C-O-C, or C=C in furfuryl alcohol by engineered Pt sites supported on layered double oxides. ACS. Catal. 2020, 10, 8032-41.

62. Qi, H.; Li, Y.; Zhou, Z.; et al. Synthesis of piperidines and pyridine from furfural over a surface single-atom alloy Ru1CoNP catalyst. Nat. Commun. 2023, 14, 6329.

63. An, Z.; Yang, P.; Duan, D.; et al. Highly active, ultra-low loading single-atom iron catalysts for catalytic transfer hydrogenation. Nat. Commun. 2023, 14, 6666.

64. Chen, X.; Guan, W.; Tsang, C.; Hu, H.; Liang, C. Lignin valorizations with Ni catalysts for renewable chemicals and fuels productions. Catal 2019, 9, 488.

65. Rinaldi, R.; Jastrzebski, R.; Clough, M. T.; et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. Engl. 2016, 55, 8164-215.

66. Chen, X.; Zhang, B.; Wang, Y.; Yan, N. Valorization of renewable carbon resources for chemicals. Chimia 2015, 69, 120-4.

67. Dong, L.; Xin, Y.; Liu, X.; et al. Selective hydrodeoxygenation of lignin oil to valuable phenolics over Au/Nb2O5 in water. Green. Chem. 2019, 21, 3081-90.

68. Horáček, J.; Šťávová, G.; Kelbichová, V.; Kubička, D. Zeolite-beta-supported platinum catalysts for hydrogenation/hydrodeoxygenation of pyrolysis oil model compounds. Catal. Today. 2013, 204, 38-45.

69. Yan, K.; Wang, D.; Li, H. Atom doping engineering of metal/carbon catalysts for biomass hydrodeoxygenation. ACS. Sustainable. Chem. Eng. 2021, 9, 16531-55.

70. Tian, S.; Wang, Z.; Gong, W.; et al. Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C3N4 catalyst. J. Am. Chem. Soc. 2018, 140, 11161-4.

71. Li, Z.; Lu, X.; Sun, W.; et al. One-step synthesis of single palladium atoms in WO2.72 with high efficiency in chemoselective hydrodeoxygenation of vanillin. Appl. Catal. B:. Environ. 2021, 298, 120535.

72. Sun, J.; Han, Y.; Fu, H.; Qu, X.; Xu, Z.; Zheng, S. Au@Pd/TiO2 with atomically dispersed Pd as highly active catalyst for solvent-free aerobic oxidation of benzyl alcohol. Chem. Eng. J. 2017, 313, 1-9.

73. Li, T.; Liu, F.; Tang, Y.; et al. Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols. Angew. Chem. Int. Ed. Engl. 2018, 57, 7795-9.

74. Zhou, H.; Hong, S.; Zhang, H.; et al. Toward biomass-based single-atom catalysts and plastics: highly active single-atom Co on N-doped carbon for oxidative esterification of primary alcohols. Appl. Catal. B. Environ. 2019, 256, 117767.

75. Xu, K.; Chen, Y.; Yang, H.; et al. Partial hydrogenation of anisole to cyclohexanone in water medium catalyzed by atomically dispersed Pd anchored in the micropores of zeolite. Appl. Catal. B. Environ. 2024, 341, 123244.

76. Liu, S.; Bai, L.; van, M. A. P.; et al. Oxidative cleavage of β-O-4 bonds in lignin model compounds with a single-atom Co catalyst. Green. Chem. 2019, 21, 1974-81.

77. Kusumoto, S.; Nozaki, K. Direct and selective hydrogenolysis of arenols and aryl methyl ethers. Nat. Commun. 2015, 6, 6296.

78. Prasomsri, T.; Shetty, M.; Murugappan, K.; Román-leshkov, Y. Insights into the catalytic activity and surface modification of MoO3 during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures. Energy. Environ. Sci. 2014, 7, 2660-9.

79. Olcese, R.; Bettahar, M.; Malaman, B.; et al. Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon). Appl. Catal. B. Environ. 2013, 129, 528-38.

80. Li, C.; Nakagawa, Y.; Yabushita, M.; Nakayama, A.; Tomishige, K. Guaiacol hydrodeoxygenation over iron-ceria catalysts with platinum single-atom alloy clusters as a promoter. ACS. Catal. 2021, 11, 12794-814.

81. Xiang, L.; Fan, G.; Yang, L.; Zheng, L.; Li, F. Structure-tunable pompon-like RuCo catalysts: insight into the roles of atomically dispersed Ru-Co sites and crystallographic structures for guaiacol hydrodeoxygenation. J. Catal. 2021, 398, 76-88.

82. Wang, B.; Zhou, P.; Yan, X.; Li, H.; Wu, H.; Zhang, Z. Cooperative catalysis of Co single atoms and nanoparticles enables selective CAr-OCH3 cleavage for sustainable production of lignin-based cyclohexanols. J. Energy. Chem. 2023, 79, 535-49.

83. Guo, H.; Zhao, J.; Chen, Y.; et al. Mechanistic insights into hydrodeoxygenation of lignin derivatives over Ni single atoms supported on Mo2C. ACS. Catal. 2024, 14, 703-17.

84. Zhang, K.; Meng, Q.; Wu, H.; et al. Selective hydrodeoxygenation of aromatics to cyclohexanols over Ru single atoms supported on CeO2. J. Am. Chem. Soc. 2022, 144, 20834-46.

85. Chen, L.; Pan, L.; van, M. A. P.; et al. Anchoring single platinum atoms onto nickel nanoparticles affords highly selective catalysts for lignin conversion. Cell. Rep. Phys. Sci. 2021, 2, 100567.

86. Meng, G.; Lan, W.; Zhang, L.; et al. Synergy of single atoms and lewis acid sites for efficient and selective lignin disassembly into monolignol derivatives. J. Am. Chem. Soc. 2023, 145, 12884-93.

87. Tobimatsu, Y.; Chen, F.; Nakashima, J.; et al. Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. Plant. Cell. 2013, 25, 2587-600.

88. Zhuo, C.; Rao, X.; Azad, R.; et al. Enzymatic basis for C-lignin monomer biosynthesis in the seed coat of cleome hassleriana. Plant. J. 2019, 99, 506-20.

89. Wang, S.; Zhang, K.; Li, H.; Xiao, L. P.; Song, G. Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nat. Commun. 2021, 12, 416.

90. Jiang, M.; Chen, X.; Wang, L.; Liang, J.; Wei, X.; Nong, W. Anchoring single Ni atoms on CeO2 nanospheres as an efficient catalyst for the hydrogenolysis of lignin to aromatic monomers. Fuel 2022, 324, 124499.

91. Liu, C. X.; Liu, K.; Xu, Y.; et al. Photocatalytic upgrading of polylactic acid waste into alanine under mild conditions. Angew. Chem. Int. Ed. Engl. 2024, 63, e202401255.

92. Taarning, E.; Madsen, A. T.; Marchetti, J. M.; Egeblad, K.; Christensen, C. H. Oxidation of glycerol and propanediols in methanol over heterogeneous gold catalysts. Green. Chem. 2008, 10, 408.

93. Li, S.; Deng, W.; Li, Y.; Zhang, Q.; Wang, Y. Catalytic conversion of cellulose-based biomass and glycerol to lactic acid. J. Energy. Chem. 2019, 32, 138-51.

94. Wang, S.; Yin, K.; Zhang, Y.; Liu, H. Glycerol hydrogenolysis to propylene glycol and ethylene glycol on zirconia supported noble metal catalysts. ACS. Catal. 2013, 3, 2112-21.

95. Nakagawa, Y.; Tomishige, K. Heterogeneous catalysis of the glycerol hydrogenolysis. Catal. Sci. Technol. 2011, 1, 179.

96. Renders, T.; Van, B. S.; Koelewijn, S.; Schutyser, W.; Sels, B. F. Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy. Environ. Sci. 2017, 10, 1551-7.

97. Van, B. S.; Schutyser, W.; Vanholme, R.; et al. Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy. Environ. Sci. 2015, 8, 1748-63.

98. Renders, T.; Cooreman, E.; Van, B. S.; et al. Catalytic lignocellulose biorefining in n-butanol/water: a one-pot approach toward phenolics, polyols, and cellulose. Green. Chem. 2018, 20, 4607-19.

99. Wang, J.; Zhao, X.; Lei, N.; et al. Hydrogenolysis of glycerol to 1,3-propanediol under low hydrogen pressure over WOx-supported single/pseudo-single atom Pt catalyst. ChemSusChem 2016, 9, 784-90.

100. Zhang, X.; Cui, G.; Feng, H.; et al. Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun. 2019, 10, 5812.

101. An, Z.; Zhang, Z.; Huang, Z.; et al. Pt1 enhanced C-H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid. Nat. Commun. 2022, 13, 5467.

102. Lou, Y.; Zheng, Y.; Li, X.; et al. Pocketlike active site of Rh1/MoS2 single-atom catalyst for selective crotonaldehyde hydrogenation. J. Am. Chem. Soc. 2019, 141, 19289-95.

103. Lou, Y.; Zhao, Y.; Liu, H.; et al. Edge-confined Pt1/MoS2 single-atom catalyst promoting the selective activation of carbon-oxygen bond. ChemCatChem 2021, 13, 2783-93.

104. Li, Z.; Dong, X.; Zhang, M.; et al. Selective hydrogenation on a highly active single-atom catalyst of palladium dispersed on ceria nanorods by defect engineering. ACS. Appl. Mater. Interfaces. 2020, 12, 57569-77.

105. Li, Z.; Fan, T.; Li, H.; et al. Atomically defined undercoordinated copper active sites over nitrogen-doped carbon for aerobic oxidation of alcohols. Small 2022, 18, e2106614.

106. Li, Z.; Leng, L.; Lu, X.; et al. Single palladium atoms stabilized by β-FeOOH nanorod with superior performance for selective hydrogenation of cinnamaldehyde. Nano. Res. 2022, 15, 3114-21.

107. Li, Z.; Wei, W.; Li, H.; et al. Low-temperature synthesis of single palladium atoms supported on defective hexagonal boron nitride nanosheet for chemoselective hydrogenation of cinnamaldehyde. ACS. Nano. 2021, 15, 10175-84.

108. Liang, Y.; Tang, Q.; Liu, L.; Wang, D.; Dong, J. Fabrication of highly oxidized Pt single-atom catalysts to suppress the deep hydrogenation of unsaturated aldehydes. Appl. Catal. B. Environ. 2023, 333, 122783.

109. Li, X.; Liu, J.; Wu, J.; Zhang, L.; Cao, D.; Cheng, D. Constructing a highly active Pd atomically dispersed catalyst for cinnamaldehyde hydrogenation: synergistic catalysis between Pd-N3 single atoms and fully exposed Pd clusters. ACS. Catal. 2024, 14, 2369-79.

110. Park, J.; Cahyadi, H. S.; Mushtaq, U.; et al. Highly efficient reductive catalytic fractionation of lignocellulosic biomass over extremely low-loaded Pd catalysts. ACS. Catal. 2020, 10, 12487-506.

111. Liu, Z.; Li, H.; Gao, X.; et al. Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose. Nat. Commun. 2022, 13, 4716.

112. Ge, J.; Wang, G.; Sui, W.; et al. Highly efficient metal-acid synergetic catalytic fractionation of lignocellulose under mild conditions over lignin-coordinated N-anchoring Co single-atom catalyst. Chem. Eng. J. 2023, 462, 142109.

113. Miao, J.; Ma, Y.; Wang, X.; et al. Efficiently selective C(O-)-C bond cleavage for full lignocellulose upgrading coupled with energy-saving hydrogen production by Ir single-atom electrocatalyst. Appl. Catal. B. Environ. 2023, 336, 122937.

114. Zhu, P.; Shi, M.; Shen, Z.; Liao, X.; Chen, Y. Electrocatalytic conversion of biomass-derived furan compounds: mechanisms, catalysts and perspectives. Chem. Sci. 2024, 15, 4723-56.

115. Yang, M.; Yuan, Z.; Peng, R.; Wang, S.; Zou, Y. Recent progress on electrocatalytic valorization of biomass-derived organics. Energy. . Environ. Mater. 2022, 5, 1117-38.

116. Ye, F.; Zhang, S.; Cheng, Q.; et al. The role of oxygen-vacancy in bifunctional indium oxyhydroxide catalysts for electrochemical coupling of biomass valorization with CO2 conversion. Nat. Commun. 2023, 14, 2040.

117. Liu, S.; Gao, M.; Wu, S.; et al. A coupled electrocatalytic system with reduced energy input for CO2 reduction and biomass valorization. Energy. Environ. Sci. 2023, 16, 5305-14.

118. Zeng, L.; Chen, Y.; Sun, M.; et al. Cooperative Rh-O5/Ni(Fe) site for efficient biomass upgrading coupled with H2 production. J. Am. Chem. Soc. 2023, 145, 17577-87.

119. Xu, C.; Paone, E.; Rodríguez-Padrón, D.; Luque, R.; Mauriello, F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem. Soc. Rev. 2020, 49, 4273-306.

120. Ji, K.; Xu, M.; Xu, S. M.; et al. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst. Angew. Chem. Int. Ed. Engl. 2022, 61, e202209849.

121. Lu, Y.; Liu, T.; Dong, C. L.; et al. Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis. Adv. Mater. 2021, 33, e2007056.

122. Ge, R.; Wang, Y.; Li, Z.; et al. Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew. Chem. Int. Ed. Engl. 2022, 61, e202200211.

123. Zhou, Y.; Slater, T. J.; Luo, X.; Shen, Y. A versatile single-copper-atom electrocatalyst for biomass valorization. Appl. Catal. B. Environ. 2023, 324, 122218.

124. Mukadam, Z.; Liu, S.; Pedersen, A.; et al. Furfural electrovalorisation using single-atom molecular catalysts. Energy. Environ. Sci. 2023, 16, 2934-44.

125. Qin, M.; Fan, S.; Li, X.; Tade, M. O.; Liu, S. Electroreductive CO coupling of benzaldehyde over SACs Au-NiMn2O4 spinel synergetic composites. J. Colloid. Inter. Sci. 2022, 625, 305-16.

126. Wang, Y.; Zhu, Y. Q.; Xie, Z.; et al. Efficient electrocatalytic oxidation of glycerol via promoted OH* generation over single-atom-bismuth-doped spinel Co3O4. ACS. Catal. 2022, 12, 12432-43.

127. Cui, T.; Ma, L.; Wang, S.; et al. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C-C bond cleavage in lignin models under ambient conditions. J. Am. Chem. Soc. 2021, 143, 9429-39.

128. Yang, F.; Liu, S.; Tang, T.; Yao, S.; An, C. Visible-light driven H2 evolution coupled with furfuryl alcohol selective oxidation over Ru atom decorated Zn0.5Cd0.5S nanorods. Catal. Sci. Technol. 2023, 13, 2469-74.

129. Lu, X.; Guo, C.; Zhang, M.; et al. Rational design of palladium single-atoms and clusters supported on silicoaluminophosphate-31 by a photochemical route for chemoselective hydrodeoxygenation of vanillin. Nano. Res. 2021, 14, 4347-55.

130. Deng, J.; Zhou, C.; Yang, Y.; et al. Visible-light-driven selective cleavage of CC bonds in lignin model substrates using carbon nitride-supported ruthenium single-atom catalyst. Chem. Eng. J. 2023, 462, 142282.

131. Xiong, L.; Qi, H.; Zhang, S.; et al. Highly selective transformation of biomass derivatives to valuable chemicals by single-atom photocatalyst Ni/TiO2. Adv. Mater. 2023, 35, e2209646.

132. Xiong, L.; Yu, Z.; Cao, H.; Guan, W.; Su, Y.; et al. Converting glycerol into valuable trioses by Cuδ+-single-atom-decorated WO3 under visible light. Angew. Chem. Int. Ed. Engl. 2024, 63, e202318461.

133. Ren, P.; Gao, Z.; Montini, T.; et al. Stepwise photoassisted decomposition of carbohydrates to H2. Joule 2023, 7, 333-49.

134. Li, W.; Zheng, X.; Xu, B. B.; et al. Atomic ruthenium-promoted cadmium sulfide for photocatalytic production of amino acids from biomass derivatives. Angew. Chem. Int. Ed. Engl. 2024, 63, e202320014.

135. Tian, Z.; Da, Y.; Wang, M.; et al. Selective photoelectrochemical oxidation of glucose to glucaric acid by single atom Pt decorated defective TiO2. Nat. Commun. 2023, 14, 142.

136. Lu, X.; Xie, S.; Yang, H.; Tong, Y.; Ji, H. Photoelectrochemical hydrogen production from biomass derivatives and water. Chem. Soc. Rev. 2014, 43, 7581-93.

137. Feng, X.; Sun, T.; Feng, X.; et al. Single-atomic-site platinum steers middle hydroxyl selective oxidation on amorphous/crystalline homojunction for photoelectrochemical glycerol oxidation coupled with hydrogen generation. Adv. Funct. Mater. 2024, 34, 2316238.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/