REFERENCES

1. Kuo KH. A brief history of metallography: Ⅰ. the beginning. Mater Sci Eng 2000;18:2-9.

2. Kuo KH. A brief history of metallography: Ⅱ.β-Fe controversy. Mater Sci Eng 2001;19:6-12.

3. Kuo KH. A brief history of metallography: Ⅲ. Fe-C equilibrium diagram. Mater Sci Eng 2011;19:2-8.

4. Kuo KH. A brief history of metallography: Ⅳ. early developments of alloy steels. Mater Sci Eng 2001;19:2-9.

5. Kuo KH. A brief history of metallography: Ⅴ. X-ray metallography. Mater Sci Eng 2001;19:3-8.

6. Kuo KH. A brief history of metallography: Ⅵ. application of electron microscopy in materials science. Mater Sci Eng 2002;20:5-10.

7. Haider M, Rose H, Uhlemann S, Schwan E, Kabius B, Urban K. A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 1998;75:53-60.

8. Krivanek OL, Dellby N, Lupini AR. Towards sub-Å electron beams. Ultramicroscopy 1999;78:1-11.

9. Pennycook SJ, Nellist PD. Scanning transmission electron microscopy. Springer; 2011. Available from: https://link.springer.com/book/10.1007/978-1-4419-7200-2 [Last accessed on 19 Sep 2024].

10. Urban KW, Barthel J, Houben L, et al. Progress in atomic-resolution aberration corrected conventional transmission electron microscopy (CTEM). Prog Mater Sci 2023;133:101037.

11. Hoppe W. Beugung im inhomogenen Primärstrahlwellenfeld. Ⅰ. prinzip einer phasenmessung von elektronenbeungungsinterferenzen. Acta Crystallogr 1969;A25:495-501.

12. Hoppe W, Strube G. Beugung in inhomogenen Primärstrahlenwellenfeld. Ⅱ. lichtoptische analogieversuche zur phasenmessung von gitterinterferenzen. Acta Crystallogr 1969;A25:502-7.

13. Hoppe W. Beugung im inhomogenen Primärstrahlwellenfeld. Ⅲ. amplituden- und phasenbestimmung bei unperiodischen objekten. Acta Crystallogr 1969;A25:508-14.

14. Rodenburg JM. Ptychography and related diffractive imaging methods. Adv Imaging Elect Phys 2008;150:87-184.

15. Rodenburg J, Maiden A. Ptychography. In: Hawkes PW, Spence JCH, editors. Springer handbook of microscopy. Cham: Springer International Publishing; 2019. pp. 819-904.

16. Jiang Y, Chen Z, Han Y, et al. Electron ptychography of, 2D materials to deep sub-ångström resolution. Nature 2018;559:343-49.

17. Chen Z, Jiang Y, Shao YT, et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 2021;372:826-31.

18. Yang W, Sha H, Cui J, Mao L, Yu R. Local-orbital ptychography for ultrahigh-resolution imaging. Nat Nanotechnol 2024;19:612-17.

19. Yu R, Sha HZ, Cui JZ, Yang WF. Principles and characteristics of electron ptychography. J Chin Electron Microsc Soc 2023;42:767-81. Available from: https://kns.cnki.net/kcms2/article/abstract?v=7gnxONS3vklJNT0BEbRMTsZlqJXi8Nzfg8If9M3jGZNg01-gBJ64Zy2QdH6KGnqqupRh7943cuK0gEDvlqJ8PMUDN_uvcy7WGPhUB9g7yG1z4clxTb_sdrqXO5EBOxeebd8mfDXJU7TIfpSJhtozH0dLO9Ev597WLHmPTaiSEiY=&uniplatform=NZKPT [Last accessed on 19 Sep 2024].

20. Wang L, Zhang Y, Zeng Z, et al. Tracking the sliding of grain boundaries at the atomic scale. Science 2022;375:1261-5.

21. Yuan W, Fang K, You R, Zhang Z, Wang Y. Toward in situ atomistic design of catalytic active sites via controlled atmosphere transmission electron microscopy. Acc Mater Res 2023;4:275-86.

22. Jia CL, Lentzen M, Urban K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 2003;299:870-3.

23. Pfeiffer F. X-ray ptychography. Nat Photon 2018;12:9-17.

24. Gabor D. A new microscopic principle. Nature 1948;161:777-78.

25. Cowley JM. Twenty forms of electron holography. Ultramicroscopy 1992;41:335-48.

26. Lichte H, Lehmann M. Electron holography-basics and applications. Rep prog phys 2008;71:016102.

27. Dunin-Borkowski RE, Kovács A, Kasama T, McCartney MR, Smith DJ. Electron holography. In: Hawkes PW, Spence JCH, editors. Springer handbook of microscopy. Cham: Springer International Publishing; 2019. pp. 767-818.

28. Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat Photon 2013;7:739-45.

29. Kirkland AI, Saxton WO, Chau KL, Tsuno K, Kawasaki M. Super-resolution by aperture synthesis: tilt series reconstruction in CTEM. Ultramicroscopy 1995;57:355-74.

30. Hruszkewycz SO, Holt MV, Murray CE, et al. Quantitative nanoscale imaging of lattice distortions in epitaxial semiconductor heterostructures using nanofocused X-ray Bragg projection ptychography. Nano Lett 2012;12:5148-54.

31. Takahashi Y, Suzuki A, Furutaku S, Yamauchi K, Kohmura Y, Ishikawa T. Bragg X-ray ptychography of a silicon crystal: visualization of the dislocation strain field and the production of a vortex beam. Phys Rev B 2013;87:121201(R).

32. Maiden AM, Sarahan MC, Stagg MD, Schramm SM, Humphry MJ. Quantitative electron phase imaging with high sensitivity and an unlimited field of view. Sci Rep 2015;5:14690.

33. Allars F, Lu PH, Kruth M, Dunin-Borkowski RE, Rodenburg JM, Maiden AM. Efficient large field of view electron phase imaging using near-field electron ptychography with a diffuser. Ultramicroscopy 2021;231:113257.

34. Findlay SD, Shibata N, Sawada H, et al. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl Phys Lett 2009;95:191913.

35. Shibata N, Findlay SD, Kohno Y, Sawada H, Kondo Y, Ikuhara Y. Differential phase-contrast microscopy at atomic resolution. Nat Phys 2012;8:611-5.

36. Close R, Chen Z, Shibata N, Findlay SD. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. Ultramicroscopy 2015;159:124-37.

37. Lazic I, Bosch EGT, Lazar S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 2016;160:265-80.

38. Burger J, Riedl T, Lindner JKN. Influence of lens aberrations, specimen thickness and tilt on differential phase contrast STEM images. Ultramicroscopy 2020;219:113118.

39. Shibata N, Kohno Y, Findlay SD, Sawada H, Kondo Y, Ikuhara Y. New area detector for atomic-resolution scanning transmission electron microscopy. J Electron Microsc 2010;59:473-9.

40. Toyama S, Seki T, Kanitani Y, et al. Quantitative electric field mapping in semiconductor heterostructures via tilt-scan averaged DPC STEM. Ultramicroscopy 2022;238:113538.

41. Ophus C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc Microanal 2019;25:563-82.

42. Tate MW, Purohit P, Chamberlain D, et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc Microanal 2016;22:237-49.

43. Philipp HT, Tate MW, Shanks KS, et al. Very-high dynamic range, 10, 000 frames/second pixel array detector for electron microscopy. Microsc Microanal 2022;28:425-40.

44. Ballabriga R, Alozy J, Blaj G, et al. The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J Instrum 2013;8:C02016.

45. Ryll H, Simson M, Hartmann R, et al. A pnCCD-based, fast direct single electron imaging camera for TEM and STEM. J Instrum 2016;11:P04006.

46. Ercius P, Johnson I, Brown H, et al. The, 4D camera - an 87 kHz frame-rate detector for counted 4D-STEM experiments. Microsc Microanal 2020;26:1896-7.

47. Nord M, Webster RWH, Paton KA, et al. Fast pixelated detectors in scanning transmission electron microscopy. Part Ⅰ: data acquisition, live processing, and storage. Microsc Microanal 2020;26:653-66.

48. Jannis D, Hofer C, Gao C, et al. Event driven, 4D STEM acquisition with a Timepix3 detector: microsecond dwell time and faster scans for high precision and low dose applications. Ultramicroscopy 2021;233:113423.

49. Zambon P, Bottinelli S, Schnyder R, et al. KITE: high frame rate, high count rate pixelated electron counting ASIC for 4D STEM applications featuring high-Z sensor. Nucl Instrum Meth Phys Res A 2023;1048:167888.

50. Fienup JR. Phase retrieval algorithms: a comparison. Appl Opt 1982;21:2758-69.

51. Miao J, Charalambous P, Kirz J, Sayre D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 1999;400:342-4.

52. Gerchberg RW. Phase determination from image and diffraction plane pictures in the electron microscope. Optik 1971;35:275-84. Available from: https://cir.nii.ac.jp/crid/1573668925814696704 [Last accessed on 11 Sep 2024].

53. Gerchberg RW. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972;35:237-46. Available from: https://cir.nii.ac.jp/crid/1570854175282689408 [Last accessed on 11 Sep 2024].

54. Sayre D. Some implications of a theorem due to Shannon. Acta Crystallogr 1952;5:843.

55. Nellist PD, McCallum BC, Rodenburg JM. Resolution beyond the 'information limit' in transmission electron microscopy. Nature 1995;374:630-32.

56. Blackburn AM, McLeod RA. Practical implementation of high-resolution electron ptychography and comparison with off-axis electron holography. Microscopy 2021;70:131-47.

57. Rodenburg JM, Bates RHT. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Philos Trans R Soc A 1992;339:521-53.

58. Rodenburg JM, McCallum BC, Nellist PD. Experimental tests on double-resolution coherent imaging via STEM. Ultramicroscopy 1993;48:304-14.

59. Bangun A, Baumeister PF, Clausen A, Weber D, Dunin-Borkowski RE. Wigner distribution deconvolution adaptation for live ptychography reconstruction. Microsc Microanal 2023;29:994-1008.

60. Strauch A, Weber D, Clausen A, et al. Live processing of momentum-resolved STEM data for first moment imaging and ptychography. Microsc Microanal 2021;27:1078-92.

61. Gao C, Hofer C, Jannis D, et al. Overcoming contrast reversals in focused probe ptychography of thick materials: An optimal pipeline for efficiently determining local atomic structure in materials science. Appl Phys Lett 2022;121:081906.

62. Yang H, Rutte RN, Jones L, et al. Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures. Nat Commun 2016;7:12532.

63. O'Leary CM, Haas B, Koch CT, Nellist PD, Jones L. Increasing spatial fidelity and SNR of, 4D-STEM using multi-frame data fusion. Microsc Microanal 2022;28:1417-27.

64. Song W, Pérez-Osorio MA, Marie JJ, et al. Direct imaging of oxygen shifts associated with the oxygen redox of Li-rich layered oxides. Joule 2022;6:1049-65.

65. Rodenburg JM, Faulkner HML. A phase retrieval algorithm for shifting illumination. Appl Phys Lett 2004;85:4795-97.

66. Maiden AM, Rodenburg JM. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 2009;109:1256-62.

67. Maiden A, Johnson D, Li P. Further improvements to the ptychographical iterative engine. Optica 2017;4:736-45.

68. Maiden AM, Humphry MJ, Rodenburg JM. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J Opt Soc Am A 2012;29:1606-14.

69. Thibault P, Guizar-Sicairos M. Maximum-likelihood refinement for coherent diffractive imaging. New J Phys 2012;14:063004.

70. Odstrcil M, Menzel A, Guizar-Sicairos M. Iterative least-squares solver for generalized maximum-likelihood ptychography. Opt Express 2018;26:3108-23.

71. Thibault P, Dierolf M, Menzel A, Bunk O, David C, Pfeiffer F. High-resolution scanning X-ray diffraction microscopy. Science 2008;321:379-82.

72. Cowley JM, Moodie AF. The scattering of electrons by atoms and crystals. Ⅰ. a new theoretical approach. Acta Crystallogr 1957;10:609-19.

73. Goodman P, Moodie AF. Numerical evaluations of N-beam wave functions in electron scattering by the multi-slice method. Acta Crystallogr A 1974;30:280-90.

74. Sha H, Cui J, Yang W, Yu R. Information limit of 15 picometers achieved with bright-field ptychography. Phys Rev B 2024;110:L060104.

75. Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements. Nature 2013;494:68-71.

76. Cao S, Kok P, Li P, Maiden AM, Rodenburg JM. Modal decomposition of a propagating matter wave via electron ptychography. Phys Rev A 2016;94:063621.

77. Li P, Edo T, Batey D, Rodenburg J, Maiden A. Breaking ambiguities in mixed state ptychography. Opt Express 2016;24:9038-52.

78. Chen Z, Odstrcil M, Jiang Y, et al. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose. Nat commun 2020;11:2994.

79. Mao L, Cui J, Yu R. Accurate atomic positions via local-orbital tomography with depth-dependent interactions. bioRxiv 2024. Available from: https://arxiv.org/abs/2401.12466 [Last accessed on 11 Sep 2024].

80. Mao L, Cui J, Yu R. 3D reconstruction of a million atoms by multiple-section local-orbital tomography. Sci Bull 2024;in press.

81. Madsen GKH, Blaha P, Schwarz K, Sjöstedt E, Nordström L. Efficient linearization of the augmented plane-wave method. Phys Rev B 2001;64:195134.

82. Jones L, Yang H, Pennycook TJ, et al. Smart Align - a new tool for robust non-rigid registration of scanning microscope data. Adv Struct Chem Imaging 2015;1:8.

83. Wang Y, Suyolcu YE, Salzberger U, et al. Correcting the linear and nonlinear distortions for atomically resolved STEM spectrum and diffraction imaging. Microscopy 2018;67:i114-22.

84. Ning S, Xu W, Ma Y, et al. Accurate and robust calibration of the uniform affine transformation between scan-camera coordinates for atom-resolved in-focus 4D-STEM datasets. Microsc Microanal 2022;28:622-32.

85. Zhang F, Peterson I, Vila-Comamala J, et al. Translation position determination in ptychographic coherent diffraction imaging. Opt Express 2013;21:13592-606.

86. Guizar-Sicairos M, Fienup JR. Phase retrieval with transverse translation diversity: a nonlinear optimization approach. Opt Express 2008;16:7264-78.

87. Xu W, Lin H, Wang H, Zhang F. Reconstruction method of a ptychographic dataset with unknown positions. Opt Lett 2020;45:4634-7.

88. Ning S, Xu W, Loh L, et al. An integrated constrained gradient descent (iCGD) protocol to correct scan-positional errors for electron ptychography with high accuracy and precision. Ultramicroscopy 2023;248:113716.

89. Ning S, Xu W, Sheng P, et al. Robust ptychographic reconstruction with an out-of-focus electron probe. bioRxiv 2024.

90. Sha H, Cui J, Yu R. Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction. Sci Adv 2022;8:eabn2275.

91. Masters BR. Superresolution optical microscopy. Springer series in optical sciences Berlin: Springer; 2020.

92. Nguyen KX, Jiang Y, Lee CH, et al. Achieving sub-0.5-angstrom-resolution ptychography in an uncorrected electron microscope. Science 2024;383:865-70.

93. Zhang J, Shen S, Puggioni D, et al. A correlated ferromagnetic polar metal by design. Nat Mater 2024;23:912-9.

94. Liu C, Cui J, Cheng Z, et al. Direct observation of oxygen atoms taking tetrahedral interstitial sites in medium-entropy body-centeredcubic solutions. Adv Mater 2023;35:2209941.

95. Cui J, Sha H, Mao L, Sun K, Yang W, Yu R. Imaging, counting, and positioning single interstitial atoms in solids. bioRxiv 2024.

96. Cui J, Sha H, Yang W, Yu R. Antiferromagnetic imaging via ptychographic phase retrieval. Sci Bull 2024;69:466-72.

97. O'Leary CM, Allen CS, Huang C, et al. Phase reconstruction using fast binary, 4D STEM data. Appl Phys Lett 2020;116:124101.

98. Peng X, Pelz PM, Zhang Q, et al. Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques. Nat Commun 2022;13:5197.

99. Sha H, Cui J, Li J, et al. Ptychographic measurements of varying size and shape along zeolite channels. Sci Adv 2023;9:eadf1151.

100. Dong Z, Zhang E, Jiang Y, et al. Atomic-level imaging of zeolite local structures using electron ptychography. J Am Chem Soc 2023;145:6628-32.

101. Zhang H, Li G, Zhang J, et al. Three-dimensional inhomogeneity of zeolite structure and composition revealed by electron ptychography. Science 2023;380:633-38.

102. Zhou L, Song J, Kim JS, et al. Low-dose phase retrieval of biological specimens using cryo-electron ptychography. Nat Commun 2020;11:2773.

103. Ding Z, Gao S, Fang W, et al. Three-dimensional electron ptychography of organic-inorganic hybrid nanostructures. Nat Commun 2022;13:4787.

104. Pei X, Zhou L, Huang C, et al. Cryogenic electron ptychographic single particle analysis with wide bandwidth information transfer. Nat Commun 2023;14:3027.

105. Küçükoğlu B, Mohammed I, Guerrero-Ferreira RC, et al. Low-dose cryo-electron ptychography of proteins at sub-nanometer resolution. Nat Commun 2024;15:8062.

106. Mao W, Zhang W, Huang C, et al. Multi-convergence-angle ptychography with simultaneous strong contrast and high resolution. arXiv 2024.

107. Gao S, Wang P, Zhang F, et al. Electron ptychographic microscopy for three-dimensional imaging. Nat Commun 2017;8:163.

108. Chen Z, Shao YT, Jiang Y, Muller D. Three-dimensional imaging of single dopants inside crystals using multislice electron ptychography. Microsc Microanal 2021;27:2146-48.

109. Sha H, Ma Y, Cao G, et al. Sub-nanometer-scale mapping of crystal orientation and depth-dependent structure of dislocation cores in SrTiO3. Nat Commun 2023;14:162.

110. Dong Z, Huo M, Li J, et al. Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7δ. Nature 2024;630:847-52.

111. Sha H, Zhang Y, Ma Y, et al. Polar vortex hidden in twisted bilayers of paraelectric SrTiO3. arXiv 2024.

112. Ribet SM, Varnavides G, Pedroso CCS, et al. Uncovering the three-dimensional structure of upconverting core-shell nanoparticles with multislice electron ptychography. Appl Phys Lett 2024;124:240601.

113. Cowley JM. Diffraction physics, 2nd edition. North-Holland; 1981. Available from: https://www.amazon.com/Diffraction-Physics-John-M-Cowley/dp/0444861211 [Last accessed on 11 Sep 2024].

114. Griffiths DJ, Schroeter DF. Introduction to quantum mechanics. Prentice Hall, Inc. ; 1995.

115. Springborg M. Methods of electronic-structure calculations: from molecules to solids. John Wiley & Sons, Ltd; 2000. Available from: https://www.wiley.com/en-us/Methods+of+Electronic-Structure+Calculations%3A+From+Molecules+to+Solids-p-9780471979753 [Last accessed on 11 Sep 2024].

116. Hawkes PW. Aberrations. In: Orloff J, editor. Handbook of charged particle optics. Taylor & Francis Group; 2009. pp. 209-340. Available from: https://www.routledge.com/Handbook-of-Charged-Particle-Optics/Orloff/p/book/9781420045543?srsltid=AfmBOoqQf64AfmXDnOFppZM_vb_LqahyufCLg-8uaOprdHrPlDR_2jfh [Last accessed on 11 Sep 2024].

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/