REFERENCES

1. Nejat, P.; Jomehzadeh, F.; Taheri, M. M.; Gohari, M.; Abd. Majid, M. Z. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy. Rev. 2015, 43, 843-62.

2. Li, H.; Du, H.; Luo, H.; Wang, H.; Zhu, W.; Zhou, Y. Recent developments in metal nanocluster-based catalysts for improving photocatalytic CO2 reduction performance. Microstructures 2023, 3, 2023024.

3. Zou, J.; Liang, G.; Zhang, F.; Zhang, S.; Davey, K.; Guo, Z. Revisiting the role of discharge products in Li-CO2 batteries. Adv. Mater. 2023, 35, e2210671.

4. Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Rational design of MOF-based materials for next-generation rechargeable batteries. Nanomicro. Lett. 2021, 13, 203.

5. Guo, Y.; Cao, Y.; Lu, J.; Zheng, X.; Deng, Y. The concept, structure, and progress of seawater metal-air batteries. Microstructures 2023, 3, 2023034.

6. Liang, S.; Zheng, L. J.; Song, L. N.; Wang, X. X.; Tu, W. B.; Xu, J. J. Accelerated confined mass transfer of MoS2 1D nanotube in photo-assisted metal-air batteries. Adv. Mater. 2024, 36, e2307790.

7. Fetrow, C. J.; Carugati, C.; Zhou, X. D.; Wei, S. Electrochemistry of metal-CO2 batteries: opportunities and challenges. Energy. Storage. Mater. 2022, 45, 911-33.

8. Rabiee, H.; Yan, P.; Wang, H.; Zhu, Z.; Ge, L. Electrochemical CO2 reduction integrated with membrane/adsorption-based CO2 capture in gas-diffusion electrodes and electrolytes. EcoEnergy 2024, 2, 3-21.

9. Ahmadiparidari, A.; Warburton, R. E.; Majidi, L.; et al. A long-cycle-life lithium-CO2 battery with carbon neutrality. Adv. Mater. 2019, 31, e1902518.

10. Liu, B.; Sun, Y.; Liu, L.; et al. Recent advances in understanding Li-CO2 electrochemistry. Energy. Environ. Sci. 2019, 12, 887-922.

11. Chen, J.; Chen, X. Y.; Liu, Y.; et al. Recent progress of transition metal-based catalysts as cathodes in O2/H2O-involved and pure Li-CO2 batteries. Energy. Environ. Sci. 2023, 16, 792-829.

12. Takechi, K.; Shiga, T.; Asaoka, T. A Li-O2/CO2 battery. Chem. Commun. 2011, 47, 3463-5.

13. Xu, S.; Das, S. K.; Archer, L. A. The Li-CO2 battery: a novel method for CO2 capture and utilization. RSC. Adv. 2013, 3, 6656.

14. Liu, F.; Zhou, J.; Wang, Y.; et al. Rational engineering of 2D materials as advanced catalyst cathodes for high-performance metal-carbon dioxide batteries. Small. Struct. 2023, 4, 2300025.

15. Ma, Z.; Yuan, X.; Li, L.; et al. A review of cathode materials and structures for rechargeable lithium-air batteries. Energy. Environ. Sci. 2015, 8, 2144-98.

16. Zhang, Z.; Xiao, X.; Zhu, X.; Tan, P. Addressing transport issues in non-aqueous Li-air batteries to achieving high electrochemical performance. Electrochem. Energy. Rev. 2023, 6, 157.

17. Zhang, Z.; Xiao, X.; Yan, A.; Sun, K.; Yu, J.; Tan, P. A quantitative understanding of electron and mass transport coupling in lithium-oxygen batteries. Adv. Energy. Mater. 2023, 13, 2302816.

18. Goodarzi, M.; Nazari, F.; Illas, F. Assessing the performance of cobalt phthalocyanine nanoflakes as molecular catalysts for Li-promoted oxalate formation in Li-CO2-oxalate batteries. J. Phys. Chem. C. 2018, 122, 25776-84.

19. Németh, K.; Srajer, G. CO2/oxalate cathodes as safe and efficient alternatives in high energy density metal-air type rechargeable batteries. RSC. Adv. 2014, 4, 1879-85.

20. Ma, S.; Lu, Y.; Yao, H.; Si, Y.; Liu, Q.; Li, Z. Regulating the nucleation of Li2CO3 and C by anchoring Li-containing carbonaceous species towards high performance Li-CO2 batteries. J. Energy. Chem. 2022, 65, 472-9.

21. Qiao, Y.; Yi, J.; Wu, S.; et al. Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 2017, 1, 359-70.

22. Angamuthu, R.; Byers, P.; Lutz, M.; Spek, A. L.; Bouwman, E. Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 2010, 327, 313-5.

23. Ye, Z.; Sun, H.; Gao, H.; et al. Intrinsic activity regulation of metal chalcogenide electrocatalysts for lithium-sulfur batteries. Energy. Storage. Mater. 2023, 60, 102855.

24. Li, W.; Zhang, M.; Sun, X.; et al. Boosting a practical Li-CO2 battery through dimerization reaction based on solid redox mediator. Nat. Commun. 2024, 15, 803.

25. Wang, Y. F.; Song, L. N.; Zheng, L. J.; Wang, Y.; Wu, J. Y.; Xu, J. J. Reversible carbon dioxide/lithium oxalate regulation toward advanced aprotic lithium carbon dioxide battery. Angew. Chem. Int. Ed. 2024, 63, e202400132.

26. Zhao, Z.; Su, Y.; Peng, Z. Probing lithium carbonate formation in trace-O2-assisted aprotic Li-CO2 batteries using in situ surface-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 2019, 10, 322-8.

27. Xue, H.; Gong, H.; Lu, X.; et al. Aqueous formate-based Li-CO2 battery with low charge overpotential and high working voltage. Adv. Energy. Mater. 2021, 11, 2101630.

28. Zhang, F.; Co, A. C. Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media. Angew. Chem. Int. Ed. 2020, 59, 1674-81.

29. Hou, Y.; Wang, J.; Liu, L.; et al. Mo2C/CNT: an efficient catalyst for rechargeable Li-CO2 batteries. Adv. Funct. Mater. 2017, 27, 1700564.

30. Tang, Z.; Yuan, M.; Zhu, H.; et al. Promoting the performance of Li-CO2 batteries via constructing three-dimensional interconnected K+ doped MnO2 nanowires networks. Front. Chem. 2021, 9, 670612.

31. Pipes, R.; He, J.; Bhargav, A.; Manthiram, A. Freestanding vanadium nitride nanowire membrane as an efficient, carbon-free gas diffusion cathode for Li-CO2 batteries. Energy. Storage. Mater. 2020, 31, 95-104.

32. Xie, H.; Zhang, B.; Hu, C.; Xiao, N.; Liu, D. Boosting Li-CO2 battery performances by creating holey structure on CNT cathodes. Electrochim. Acta. 2022, 417, 140310.

33. Qi, G.; Zhang, J.; Chen, L.; Wang, B.; Cheng, J. Binder-free MoN nanofibers catalysts for flexible 2-electron oxalate-based Li-CO2 batteries with high energy efficiency. Adv. Funct. Mater. 2022, 32, 2112501.

34. Chen, Y.; Fan, Z.; Wang, J.; et al. Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: a crystal phase-dependent study. J. Am. Chem. Soc. 2020, 142, 12760-6.

35. Zhou, J.; Wang, T.; Chen, L.; et al. Boosting the reaction kinetics in aprotic lithium-carbon dioxide batteries with unconventional phase metal nanomaterials. Proc. Natl. Acad. Sci. USA. 2022, 119, e2204666119.

36. Guo, L.; Tan, L.; Xu, A.; et al. Highly efficient two-dimensional Ag2Te cathode catalyst featuring a layer structure derived catalytic anisotropy in lithium-oxygen batteries. Energy. Storage. Mater. 2022, 50, 96-104.

37. Wang, Y.; Zhou, J.; Lin, C.; et al. Decreasing the overpotential of aprotic Li-CO2 batteries with the in-plane alloy structure in ultrathin 2D Ru-based nanosheets. Adv. Funct. Mater. 2022, 32, 2202737.

38. Fan, L.; Shen, H.; Ji, D.; et al. Biaxially compressive strain in Ni/Ru core/shell nanoplates boosts Li-CO2 batteries. Adv. Mater. 2022, 34, e2204134.

39. Zhao, W.; Yang, Y.; Deng, Q.; et al. Toward an understanding of bimetallic MXene solid-solution in binder-free electrocatalyst cathode for advanced Li-CO2 batteries. Adv. Funct. Mater. 2023, 33, 2210037.

40. Yu, W.; Shen, Z.; Yoshii, T.; et al. Hierarchically porous and minimally stacked graphene cathodes for high-performance lithium-oxygen batteries. Adv. Energy. Mater. 2024, 14, 2303055.

41. Zhou, X.; Zhang, A.; Chen, B.; et al. Synthesis of 2H/fcc-heterophase AuCu nanostructures for highly efficient electrochemical CO2 Reduction at industrial current densities. Adv. Mater. 2023, 35, e2304414.

42. Pipes, R.; He, J.; Bhargav, A.; Manthiram, A. Efficient Li-CO2 batteries with molybdenum disulfide nanosheets on carbon nanotubes as a catalyst. ACS. Appl. Energy. Mater. 2019, 2, 8685-94.

43. Jiang, C.; Zhang, Y.; Zhang, M.; et al. Exfoliation of covalent organic frameworks into MnO2-loaded ultrathin nanosheets as efficient cathode catalysts for Li-CO2 batteries. Cell. Rep. Phys. Sci. 2021, 2, 100392.

44. Xing, Y.; Wang, K.; Li, N.; et al. Ultrathin RuRh alloy nanosheets enable high-performance lithium-CO2 battery. Matter 2020, 2, 1494-508.

45. Xu, Y.; Gong, H.; Ren, H.; et al. Highly efficient Cu-porphyrin-based metal-organic framework nanosheet as cathode for high-rate Li-CO2 battery. Small 2022, 18, e2203917.

46. Dong, L. Z.; Zhang, Y.; Lu, Y. F.; et al. A well-defined dual Mn-site based metal-organic framework to promote CO2 reduction/evolution in Li-CO2 batteries. Chem. Commun. 2021, 57, 8937-40.

47. Li, S.; Dong, Y.; Zhou, J.; et al. Carbon dioxide in the cage: manganese metal-organic frameworks for high performance CO2 electrodes in Li-CO2 batteries. Energy. Environ. Sci. 2018, 11, 1318-25.

48. Wang, J. H.; Li, S.; Chen, Y.; et al. Phthalocyanine based metal-organic framework ultrathin nanosheet for efficient photocathode toward light-assisted Li-CO2 battery. Adv. Funct. Mater. 2022, 32, 2210259.

49. Zhang, Y.; Zhong, R. L.; Lu, M.; et al. Single metal site and versatile transfer channel merged into covalent organic frameworks facilitate high-performance Li-CO2 batteries. ACS. Cent. Sci. 2021, 7, 175-82.

50. Huang, S.; Chen, D.; Meng, C.; et al. CO2 Nanoenrichment and nanoconfinement in cage of imine covalent organic frameworks for high-performance CO2 cathodes in Li-CO2 batteries. Small 2019, 15, e1904830.

51. Li, X.; Wang, H.; Chen, Z.; et al. Covalent-organic-framework-based Li-CO2 batteries. Adv. Mater. 2019, 31, e1905879.

52. Chen, Y.; Li, X. Y.; Chen, Z.; et al. Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis. Nat. Nanotechnol. 2024, 19, 311-8.

53. Cheng, Z.; Fang, Y.; Yang, Y.; et al. Hydrogen-bonded organic framework to upgrade cycling stability and rate capability of Li-CO2 batteries. Angew. Chem. Int. Ed. 2023, 62, e202311480.

54. Yang, S.; Qiao, Y.; He, P.; et al. A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst. Energy. Environ. Sci. 2017, 10, 972-8.

55. Baek, K.; Jeon, W. C.; Woo, S.; et al. Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium-carbon dioxide cell. Nat. Commun. 2020, 11, 456.

56. Zhang, K.; Li, J.; Zhai, W.; et al. Boosting cycling stability and rate capability of Li-CO2 batteries via synergistic photoelectric effect and plasmonic interaction. Angew. Chem. Int. Ed. 2022, 61, e202201718.

57. Wang, Z.; Liu, B.; Yang, X.; et al. Dual catalytic sites of alloying effect bloom CO2 catalytic conversion for highly stable Li-CO2 battery. Adv. Funct. Mater. 2023, 33, 2213931.

58. Cheng, Z.; Wu, Z.; Chen, J.; et al. Mo2N-ZrO2 heterostructure engineering in freestanding carbon nanofibers for upgrading cycling stability and energy efficiency of Li-CO2 batteries. Small 2023, 19, e2301685.

59. Deng, Q.; Yang, Y.; Mao, C.; et al. Electronic state modulation and reaction pathway regulation on necklace-like MnOx-CeO2@polypyrrole hierarchical cathode for advanced and flexible Li-CO2 batteries. Adv. Energy. Mater. 2022, 12, 2103667.

60. Zhai, Y.; Tong, H.; Deng, J.; et al. Super-assembled atomic Ir catalysts on Te substrates with synergistic catalytic capability for Li-CO2 batteries. Energy. Storage. Mater. 2021, 43, 391-401.

61. Zhang, X.; Wang, T.; Yang, Y.; et al. Breaking the stable triangle of carbonate via W-O bonds for Li-CO2 batteries with low polarization. ACS. Energy. Lett. 2021, 6, 3503-10.

62. Ye, Z.; Jiang, Y.; Yang, T.; Li, L.; Wu, F.; Chen, R. Engineering catalytic CoSe-ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 2022, 9, e2103456.

63. Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Self-assembly of 0D-2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 2021, 33, e2101204.

64. Jiang, Y.; Wu, F.; Ye, Z.; et al. Confining CoTe2-ZnTe heterostructures on petal-like nitrogen-doped carbon for fast and robust sodium storage. Chem. Eng. J. 2023, 451, 138430.

65. Lian, Z.; Lu, Y.; Wang, C.; et al. Single-atom Ru implanted on Co3O4 nanosheets as efficient dual-catalyst for Li-CO2 batteries. Adv. Sci. 2021, 8, e2102550.

66. Hao, Y.; Jiang, Y.; Zhao, L.; et al. Bimetallic antimony-vanadium oxide nanoparticles embedded in graphene for stable lithium and sodium storage. ACS. Appl. Mater. Interfaces. 2021, 13, 21127-37.

67. Wang, H.; Xie, K.; You, Y.; et al. Realizing interfacial electronic interaction within ZnS quantum Dots/N-rGO heterostructures for efficient Li-CO2 batteries. Adv. Energy. Mater. 2019, 9, 1901806.

68. Wang, K.; Liu, D.; Liu, L.; et al. Isolated metalloid tellurium atomic cluster on nitrogen-doped carbon nanosheet for high-capacity rechargeable lithium-CO2 battery. Adv. Sci. 2023, 10, e2205959.

69. Jiang, Y.; Wu, F.; Ye, Z.; et al. Superimposed effect of hollow carbon polyhedron and interconnected graphene network to achieve CoTe2 anode for fast and ultralong sodium storage. J. Power. Sources. 2023, 554, 232174.

70. Hu, C.; Gong, L.; Xiao, Y.; et al. High-performance, long-life, rechargeable Li-CO2 batteries based on a 3D holey graphene cathode implanted with single iron atoms. Adv. Mater. 2020, 32, e1907436.

71. Jin, Y.; Liu, Y.; Song, L.; et al. Interfacial engineering in hollow NiS2/FeS2-NSGA heterostructures with efficient catalytic activity for advanced Li-CO2 battery. Chem. Eng. J. 2022, 430, 133029.

72. Liu, Y.; Zhao, S.; Wang, D.; et al. Toward an understanding of the reversible Li-CO2 batteries over metal-N4-functionalized graphene electrocatalysts. ACS. Nano. 2022, 16, 1523-32.

73. Guo, C.; Zhang, F.; Han, X.; et al. Intrinsic descriptor guided noble metal cathode design for Li-CO2 battery. Adv. Mater. 2023, 35, e2302325.

74. Liu, L.; Qin, Y.; Wang, K.; et al. Rational design of nanostructured metal/C interface in 3D self-supporting cellulose carbon aerogel facilitating high-performance Li-CO2 batteries. Adv. Energy. Mater. 2022, 12, 2103681.

75. Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Enhanced catalytic conversion of polysulfide using 1D CoTe and 2D MXene for heat-resistant and lean-electrolyte Li-S batteries. Chem. Eng. J. 2022, 430, 132734.

76. Zhang, X.; Wang, C.; Li, H.; et al. High performance Li-CO2 batteries with NiO-CNT cathodes. J. Mater. Chem. A. 2018, 6, 2792-6.

77. Chen, C. J.; Huang, C. S.; Huang, Y. C.; et al. Catalytically active site identification of molybdenum disulfide as gas cathode in a nonaqueous Li-CO2 battery. ACS. Appl. Mater. Interfaces. 2021, 13, 6156-67.

78. Liu, W.; Zhai, P.; Li, A.; et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 2022, 13, 1877.

79. Liu, Q.; Hu, Z.; Li, L.; et al. Facile synthesis of birnessite δ-MnO2 and carbon nanotube composites as effective catalysts for Li-CO2 batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 16585-93.

80. Xing, Y.; Yang, Y.; Li, D.; et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries. Adv. Mater. 2018, 30, e1803124.

81. Xiao, Y.; Du, F.; Hu, C.; et al. High-performance Li-CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts. ACS. Energy. Lett. 2020, 5, 916-21.

82. Guan, D. H.; Wang, X. X.; Li, M. L.; et al. Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li-CO2 battery. Angew. Chem. Int. Ed. 2020, 59, 19518-24.

83. Shi, Z.; Li, M.; Sun, J.; Chen, Z. Defect engineering for expediting Li-S chemistry: strategies, mechanisms, and perspectives. Adv. Energy. Mater. 2021, 11, 2100332.

84. Wang, C.; Lu, Y.; Lu, S.; et al. Boosting Li-CO2 battery performances by engineering oxygen vacancy on NiO nanosheets array. J. Power. Sources. 2021, 495, 229782.

85. Li, X.; Zhang, J.; Qi, G.; Cheng, J.; Wang, B. Vertically aligned N-doped carbon nanotubes arrays as efficient binder-free catalysts for flexible Li-CO2 batteries. Energy. Storage. Mater. 2021, 35, 148-56.

86. Chen, B.; Wang, D.; Tan, J.; et al. Designing electrophilic and nucleophilic dual centers in the ReS2 plane toward efficient bifunctional catalysts for Li-CO2 batteries. J. Am. Chem. Soc. 2022, 144, 3106-16.

87. Wang, Y.; Chu, F.; Zeng, J.; et al. Single atom catalysts for fuel cells and rechargeable batteries: principles, advances, and opportunities. ACS. Nano. 2021, 15, 210-39.

88. Zhou, A. W.; Wang, D. S.; Li, Y. D. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microstructures 2022, 2, 2022005.

89. Zhong, D. C.; Gong, Y. N.; Zhang, C.; Lu, T. B. Dinuclear metal synergistic catalysis for energy conversion. Chem. Soc. Rev. 2023, 52, 3170-214.

90. Liu, H.; Li, J.; Arbiol, J.; Yang, B.; Tang, P. Catalytic reactivity descriptors of metal-nitrogen-doped carbon catalysts for electrocatalysis. EcoEnergy 2023, 1, 154-85.

91. Cheng, J.; Bai, Y.; Lian, Y.; et al. Homogenizing Li2CO3 nucleation and growth through high-density single-atomic Ru loading toward reversible Li-CO2 reaction. ACS. Appl. Mater. Interfaces. 2022, 14, 18561-9.

92. Rho, Y. J.; Kim, B.; Shin, K.; Henkelman, G.; Ryu, W. H. Atomically miniaturized bi-phase IrOx/Ir catalysts loaded on N-doped carbon nanotubes for high-performance Li-CO2 batteries. J. Mater. Chem. A. 2022, 10, 19710-21.

93. Zheng, H.; Li, H.; Zhang, Z.; et al. Dispersed nickel phthalocyanine molecules on carbon nanotubes as cathode catalysts for Li-CO2 batteries. Small 2023, 19, e2302768.

94. Zhu, K.; Li, X.; Choi, J.; et al. Single-atom cadmium-N4 sites for rechargeable Li-CO2 batteries with high capacity and ultra-long lifetime. Adv. Funct. Mater. 2023, 33, 2213841.

95. Wang, M.; Yao, Y.; Tian, Y.; et al. Atomically dispersed manganese on carbon substrate for aqueous and aprotic CO2 electrochemical reduction. Adv. Mater. 2023, 35, e2210658.

96. Zhou, L.; Wang, H.; Zhang, K.; et al. Fast decomposition of Li2CO3/C actuated by single-atom catalysts for Li-CO2 batteries. Sci. China. Mater. 2021, 64, 2139-47.

97. Ding, J.; Xue, H.; Xiao, R.; et al. Atomically dispersed Fe-Nx species within a porous carbon framework: an efficient catalyst for Li-CO2 batteries. Nanoscale 2022, 14, 4511-8.

98. Shi, Y.; Wei, B.; Legut, D.; Du, S.; Francisco, J. S.; Zhang, R. Highly stable single-atom modified MXenes as cathode-active bifunctional catalysts in Li-CO2 battery. Adv. Funct. Mater. 2022, 32, 2210218.

99. Xu, Y.; Gong, H.; Song, L.; et al. A highly efficient and free-standing copper single atoms anchored nitrogen-doped carbon nanofiber cathode toward reliable Li-CO2 batteries. Mater. Today. Energy. 2022, 25, 100967.

100. Xu, Y.; Jiang, C.; Gong, H.; et al. Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries. Nano. Res. 2022, 15, 4100-7.

101. Li, J.; Zhang, K.; Zhao, Y.; et al. High-efficiency and stable Li-CO2 battery enabled by carbon nanotube/carbon nitride heterostructured photocathode. Angew. Chem. Int. Ed. 2022, 61, e202114612.

102. Deng, Q.; Yang, Y.; Yin, K.; Yi, J.; Zhou, Y.; Zhang, Y. Boosting active species Ru-O-Zr/Ce construction at the interface of phase-transformed zirconia-ceria isomerism toward advanced catalytic cathodes for Li-CO2 batteries. Adv. Energy. Mater. 2023, 13, 2302398.

103. Wu, C.; Qi, G.; Zhang, J.; Cheng, J.; Wang, B. Porous Mo3P/Mo nanorods as efficient mott-schottky cathode catalysts for low polarization Li-CO2 battery. Small 2023, 19, e2302078.

104. Jian, T.; Ma, W.; Hou, J.; Ma, J.; Xu, C.; Liu, H. From Ru to RuAl intermetallic/Ru heterojunction: enabling high reversibility of the CO2 redox reaction in Li-CO2 battery based on lowered interface thermodynamic energy barrier. Nano. Energy. 2023, 118, 108998.

105. Zhang, P. F.; Zhang, J. Y.; Sheng, T.; et al. Synergetic effect of Ru and NiO in the electrocatalytic decomposition of Li2CO3 to enhance the performance of a Li-CO2/O2 battery. ACS. Catal. 2020, 10, 1640-51.

106. Hao, Y.; Hu, F.; Zhu, S.; et al. MXene-regulated metal-oxide interfaces with modified intermediate configurations realizing nearly 100% CO2 electrocatalytic conversion. Angew. Chem. Int. Ed. 2023, 62, e202304179.

107. Lu, B.; Min, Z.; Xiao, X.; et al. Recycled tandem catalysts promising ultralow overpotential Li-CO2 batteries. Adv. Mater. 2024, 36, e2309264.

108. Zou, L.; Li, R.; Wang, Z.; Yu, F.; Chi, B.; Pu, J. Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries. Electrochim. Acta. 2021, 395, 139209.

109. Lin, J.; Ding, J.; Wang, H.; et al. Boosting energy efficiency and stability of Li-CO2 battery via synergy between Ru atom cluster and single atom Ru-N4 site in electrocatalyst cathode. Adv. Mater. 2022, 34, 2200559.

110. Lu, B.; Wu, X.; Xiao, X.; et al. Energy band engineering guided design of bidirectional catalyst for reversible Li-CO2 batteries. Adv. Mater. 2024, 36, e2308889.

111. Liu, Y.; Shu, P.; Zhang, M.; et al. Uncovering the geometry activity of spinel oxides in Li-CO2 battery reactions. ACS. Energy. Lett. 2024, 9, 2173-81.

112. Liu, Y.; Zhang, Z.; Tan, J.; et al. Deciphering the contributing motifs of reconstructed cobalt (II) sulfides catalysts in Li-CO2 batteries. Nat. Commun. 2024, 15, 2167.

113. Liu, L.; Shen, S.; Zhao, N.; et al. Revealing the indispensable role of in situ electrochemically reconstructed Mn(II)/Mn(III) in improving the performance of lithium-carbon dioxide batteries. Adv. Mater. 2024, 36, e2403229.

114. Khurram, A.; He, M.; Gallant, B. M. Tailoring the discharge reaction in Li-CO2 batteries through incorporation of CO2 capture chemistry. Joule 2018, 2, 2649-66.

115. Wang, X. G.; Wang, C.; Xie, Z.; et al. Improving electrochemical performances of rechargeable Li-CO2 batteries with an electrolyte redox mediator. ChemElectroChem 2017, 4, 2145-9.

116. Pipes, R.; Bhargav, A.; Manthiram, A. Phenyl disulfide additive for solution-mediated carbon dioxide utilization in Li-CO2 batteries. Adv. Energy. Mater. 2019, 9, 1900453.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/