REFERENCES

1. Nanda, S.; Mohanty, P.; Pant, K. K.; Naik, S.; Kozinski, J. A.; Dalai, A. K. Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenerg. Res. 2013, 6, 663-77.

2. Taarning, E.; Osmundsen, C. M.; Yang, X.; Voss, B.; Andersen, S. I.; Christensen, C. H. Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy. Environ. Sci. 2011, 4, 793-804.

3. Kavitha, S.; Yukesh, K. R.; Kasthuri, S.; et al. Profitable biomethane production from delignified rice straw biomass: the effect of lignin, energy and economic analysis. Green. Chem. 2020, 22, 8024-35.

4. Deng, W.; Feng, Y.; Fu, J.; et al. Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green. Energy. Environ. 2023, 8, 10-114.

5. Madadi, M.; Elsayed, M.; Sun, F.; et al. Sustainable lignocellulose fractionation by integrating p-toluenesulfonic acid/pentanol pretreatment with mannitol for efficient production of glucose, native-like lignin, and furfural. Bioresour. Technol. 2023, 371, 128591.

6. Li, X.; Xu, R.; Yang, J.; et al. Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind. Crop. Prod. 2019, 130, 184-97.

7. Wang, T.; Nolte, M. W.; Shanks, B. H. Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green. Chem. 2014, 16, 548-72.

8. Gürbüz, E. I.; Gallo, J. M.; Alonso, D. M.; Wettstein, S. G.; Lim, W. Y.; Dumesic, J. A. Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone. Angew. Chem. Int. Ed. 2013, 52, 1270-4.

9. Devi, A.; Bajar, S.; Kour, H.; Kothari, R.; Pant, D.; Singh, A. Lignocellulosic biomass valorization for bioethanol production: a circular bioeconomy approach. Bioenergy. Res. 2022, 15, 1820-41.

10. Wang, M.; Liu, M.; Lu, J.; Wang, F. Photo splitting of bio-polyols and sugars to methanol and syngas. Nat. Commun. 2020, 11, 1083.

11. Yoo, C. G.; Meng, X.; Pu, Y.; Ragauskas, A. J. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: a comprehensive review. Bioresour. Technol. 2020, 301, 122784.

12. Garedew, M.; Young-farhat, D.; Jackson, J. E.; Saffron, C. M. Electrocatalytic upgrading of phenolic compounds observed after lignin pyrolysis. ACS. Sustain. Chem. Eng. 2019, 7, 8375-86.

13. Meng, Q.; Hou, M.; Liu, H.; Song, J.; Han, B. Synthesis of ketones from biomass-derived feedstock. Nat. Commun. 2017, 8, 14190.

14. Zhou, H.; Li, Z.; Xu, S. M.; et al. Selectively upgrading lignin derivatives to carboxylates through electrochemical oxidative C(OH)-C bond cleavage by a Mn-doped cobalt oxyhydroxide catalyst. Angew. Chem. Int. Ed. 2021, 60, 8976-82.

15. Kumar, R.; Strezov, V. Thermochemical production of bio-oil: a review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products. Renew. Sustain. Energy. Rev. 2021, 135, 110152.

16. Pang, S. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals. Biotechnol. Adv. 2019, 37, 589-97.

17. Liu, W.; Cui, Y.; Du, X.; Zhang, Z.; Chao, Z.; Deng, Y. High efficiency hydrogen evolution from native biomass electrolysis. Energy. Environ. Sci. 2016, 9, 467-72.

18. Du, X.; Liu, W.; Zhang, Z.; et al. Low-energy catalytic electrolysis for simultaneous hydrogen evolution and lignin depolymerization. ChemSusChem 2017, 10, 847-54.

19. Tang, W.; Zhang, L.; Qiu, T.; et al. Efficient conversion of biomass to formic acid coupled with low energy consumption hydrogen production from water electrolysis. Angew. Chem. Int. Ed. 2023, 62, e202305843.

20. Zhang, X.; Wilson, K.; Lee, A. F. Heterogeneously catalyzed hydrothermal processing of C5-C6 sugars. Chem. Rev. 2016, 116, 12328-68.

21. Zhang, B.; Yang, Z.; Yan, C.; Xue, Z.; Mu, T. Operando forming of lattice vacancy defect in ultrathin crumpled nivw-layered metal hydroxides nanosheets for valorization of biomass. Small 2023, 19, e2207236.

22. Li, S.; Wang, S.; Wang, Y.; et al. Doped Mn enhanced NiS electrooxidation performance of HMF into FDCA at industrial-level current density. Adv. Funct. Mater. 2023, 33, 2214488.

23. Cao, Y.; Zhang, H.; Ji, S.; et al. Adsorption site regulation to guide atomic design of ni-ga catalysts for acetylene semi-hydrogenation. Angew. Chem. Int. Ed. 2020, 59, 11647-52.

24. Rao, P.; Deng, Y.; Fan, W.; et al. Movable type printing method to synthesize high-entropy single-atom catalysts. Nat. Commun. 2022, 13, 5071.

25. Zhao, H.; Zhu, L.; Yin, J.; et al. Stabilizing lattice oxygen through Mn doping in NiCo2O4-δ spinel electrocatalysts for efficient and durable acid oxygen evolution. Angew. Chem. Int. Ed. 2024, 63, e202402171.

26. Ye, Y.; Xu, J.; Li, X.; et al. Orbital occupancy modulation to optimize intermediate absorption for efficient electrocatalysts in water electrolysis and zinc-ethanol-air battery. Adv. Mater. 2024, 36, e2312618.

27. Wang, D.; Li, Q.; Han, C.; Lu, Q.; Xing, Z.; Yang, X. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 2019, 10, 3899.

28. Liu, S.; Gao, M.; Wu, S.; et al. A coupled electrocatalytic system with reduced energy input for CO2 reduction and biomass valorization. Energy. Environ. Sci. 2023, 16, 5305-14.

29. Wu, X.; Zhao, Z.; Shi, X.; et al. Multi-site catalysis of high-entropy hydroxides for sustainable electrooxidation of glucose to glucaric acid. Energy. Environ. Sci. 2024, 17, 3042-51.

30. Wu, Y.; Ma, L.; Wu, J.; Song, M.; Wang, C.; Lu, J. High-surface area mesoporous Sc2O3 with abundant oxygen vacancies as new and advanced electrocatalyst for electrochemical biomass valorization. Adv. Mater. 2024, 36, e2311698.

31. Zheng, X.; Yang, J.; Li, P.; et al. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. Sci. Adv. 2023, 9, eadi8025.

32. Yang, J.; Yang, Z.; Li, J.; et al. Engineering a hollow bowl-like porous carbon-confined Ru-MgO hetero-structured nanopair as a high-performance catalyst for ammonia borane hydrolysis. Mater. Horiz. 2024, 11, 2032-40.

33. Liu, W. J.; Xu, Z.; Zhao, D.; et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 2020, 11, 265.

34. Liu, C.; Shi, X. R.; Yue, K.; et al. S-species-evoked high-valence Ni2+δ of the evolved β-Ni(OH)2 electrode for selective oxidation of 5-hydroxymethylfurfural. Adv. Mater. 2023, 35, e2211177.

35. Zhou, P.; Zhang, Q.; Chao, Y.; et al. Partially reduced Pd single atoms on CdS nanorods enable photocatalytic reforming of ethanol into high value-added multicarbon compound. Chem 2021, 7, 1033-49.

36. Zhou, P.; Chao, Y.; Lv, F.; et al. Metal single atom strategy greatly boosts photocatalytic methyl activation and C-C coupling for the coproduction of high-value-added multicarbon compounds and hydrogen. ACS. Catal. 2020, 10, 9109-14.

37. Yang, W.; Jia, Z.; Zhou, B.; et al. Why is C-C coupling in CO 2 reduction still difficult on dual-atom electrocatalysts? ACS. Catal. 2023, 13, 9695-705.

38. Zhang, Z.; Wang, J.; Ge, X.; et al. Mixed plastics wastes upcycling with high-stability single-atom Ru catalyst. J. Am. Chem. Soc. 2023, 145, 22836-44.

39. Liu, J.; Lucci, F. R.; Yang, M.; et al. Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 2016, 138, 6396-9.

40. Xia, J.; Wang, B.; Di, J.; et al. Construction of single-atom catalysts for electro-, photo- and photoelectro-catalytic applications: State-of-the-art, opportunities, and challenges. Mater. Today. 2022, 53, 217-37.

41. Nakaya, Y.; Hirayama, J.; Yamazoe, S.; Shimizu, K. I.; Furukawa, S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 2020, 11, 2838.

42. Cao, L.; Luo, Q.; Liu, W.; et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134-41.

43. Vasconcelos, S. C.; Marchini, L.; Lima, C. G. S.; et al. Single-atom catalysts for the upgrading of biomass-derived molecules: an overview of their preparation, properties and applications. Green. Chem. 2022, 24, 2722-51.

44. Gan, T.; Wang, D. Atomically dispersed materials: Ideal catalysts in atomic era. Nano. Res. 2024, 17, 18-38.

45. Cui, T.; Li, L.; Ye, C.; et al. Heterogeneous single atom environmental catalysis: fundamentals, applications, and opportunities. Adv. Funct. Mater. 2022, 32, 2108381.

46. Wang, L.; Wang, L.; Zhang, L.; Liu, H.; Yang, J. Perspective of p-block single-atom catalysts for electrocatalysis. Trends. Chem. 2022, 4, 1135-48.

47. Qi, H.; Yang, J.; Liu, F.; et al. Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones. Nat. Commun. 2021, 12, 3295.

48. Liu, Z.; Li, H.; Gao, X.; et al. Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose. Nat. Commun. 2022, 13, 4716.

49. Li, S.; Dong, M.; Yang, J.; et al. Selective hydrogenation of 5-(hydroxymethyl)furfural to 5-methylfurfural over single atomic metals anchored on Nb2O5. Nat. Commun. 2021, 12, 584.

50. Liu, Y.; Gan, T.; He, Q.; Zhang, H.; He, X.; Ji, H. Catalytic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over atomically dispersed ruthenium catalysts. Ind. Eng. Chem. Res. 2020, 59, 4333-7.

51. Liu, S.; Bai, L.; van, M. A. P.; et al. Oxidative cleavage of β-O-4 bonds in lignin model compounds with a single-atom Co catalyst. Green. Chem. 2019, 21, 1974-81.

52. Meng, G.; Ji, K.; Zhang, W.; et al. Tandem catalyzing the hydrodeoxygenation of 5-hydroxymethylfurfural over a Ni3Fe intermetallic supported Pt single-atom site catalyst. Chem. Sci. 2021, 12, 4139-46.

53. Lou, Y.; Zhao, Y.; Liu, H.; et al. Edge-confined Pt1/MoS2 single-atom catalyst promoting the selective activation of carbon-oxygen bond. ChemCatChem 2021, 13, 2783-93.

54. Zhu, M.; Du, X.; Zhao, Y.; et al. Ring-opening transformation of 5-hydroxymethylfurfural using a golden single-atomic-site palladium catalyst. ACS. Catal. 2019, 9, 6212-22.

55. Li, Z.; Dong, X.; Zhang, M.; et al. Selective hydrogenation on a highly active single-atom catalyst of palladium dispersed on ceria nanorods by defect engineering. ACS. Appl. Mater. Interfaces. 2020, 12, 57569-77.

56. Meng, W.; Sun, S.; Xie, D.; et al. Engineering defective Co3O4 containing both metal doping and vacancy in octahedral cobalt site as high performance catalyst for methane oxidation. Mol. Catal. 2024, 553, 113768.

57. De, S.; Burange, A. S.; Luque, R. Conversion of biomass-derived feedstocks into value-added chemicals over single-atom catalysts. Green. Chem. 2022, 24, 2267-86.

58. Chen, J.; Xiao, Y.; Guo, F.; Li, K.; Huang, Y.; Lu, Q. Single-atom metal catalysts for catalytic chemical conversion of biomass to chemicals and fuels. ACS. Catal. 2024, 14, 5198-226.

59. Wang, D.; Shan, H.; Yin, W.; Li, H. Defect engineering of single-atom catalysts in biomass conversion. Fuel 2024, 355, 129439.

60. Lu, Y.; Zhang, Z.; Wang, H.; Wang, Y. Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2. Appl. Catal. B. Environ. 2021, 292, 120162.

61. Zhuang, J.; Wang, D. Recent advances of single-atom alloy catalyst: properties, synthetic methods and electrocatalytic applications. Mater. Today. Catal. 2023, 2, 100009.

62. Lu, Y.; Liu, T.; Dong, C. L.; et al. Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis. Adv. Mater. 2021, 33, e2007056.

63. Ge, R.; Wang, Y.; Li, Z.; et al. Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew. Chem. Int. Ed. 2022, 61, e202200211.

64. Gu, W.; Pei, A.; Zhang, S.; et al. Atomic-interface effect of single-atom Ru/CoOx for selective electrooxidation of 5-hydroxymethylfurfural. ACS. Appl. Mater. Interfaces. 2023, 15, 28036-43.

65. Xu, H.; Xin, G.; Hu, W.; et al. Single-atoms Ru/NiFe layered double hydroxide electrocatalyst: efficient for oxidation of selective oxidation of 5-hydroxymethylfurfural and oxygen evolution reaction. Appl. Catal. B. Environ. 2023, 339, 123157.

66. Zeng, L.; Chen, Y.; Sun, M.; et al. Cooperative Rh-O5/Ni(Fe) site for efficient biomass upgrading coupled with H2 production. J. Am. Chem. Soc. 2023, 145, 17577-87.

67. Ji, K.; Xu, M.; Xu, S. M.; et al. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1 Cu single-atom alloy catalyst. Angew. Chem. Int. Ed. 2022, 61, e202209849.

68. Zhou, Y.; Slater, T. J.; Luo, X.; Shen, Y. A versatile single-copper-atom electrocatalyst for biomass valorization. Appl. Catal. B. Environ. 2023, 324, 122218.

69. Wu, Y.; Jiang, Y.; Chen, W.; et al. Selective electroreduction of 5-hydroxymethylfurfural to dimethylfuran in neutral electrolytes via hydrogen spillover and adsorption configuration adjustment. Adv. Mater. 2024, 36, e2307799.

70. Zhou, P.; Chen, Y.; Luan, P.; et al. Selective electrochemical hydrogenation of furfural to 2-methylfuran over a single atom Cu catalyst under mild pH conditions. Green. Chem. 2021, 23, 3028-38.

71. Mukadam, Z.; Liu, S.; Pedersen, A.; et al. Furfural electrovalorisation using single-atom molecular catalysts. Energy. Environ. Sci. 2023, 16, 2934-44.

72. Wang, Y.; Zhu, Y.; Xie, Z.; et al. Efficient electrocatalytic oxidation of glycerol via promoted OH* generation over single-atom-bismuth-doped spinel Co3O4. ACS. Catal. 2022, 12, 12432-43.

73. Yu, H.; Wang, W.; Mao, Q.; et al. Pt single atom captured by oxygen vacancy-rich NiCo layered double hydroxides for coupling hydrogen evolution with selective oxidation of glycerol to formate. Appl. Catal. B. Environ. 2023, 330, 122617.

74. Feng, X.; Sun, T.; Feng, X.; et al. Single-atomic-site platinum steers middle hydroxyl selective oxidation on amorphous/crystalline homojunction for photoelectrochemical glycerol oxidation coupled with hydrogen generation. Adv. Funct. Mater. 2024, 34, 2316238.

75. Tian, Z.; Da, Y.; Wang, M.; et al. Selective photoelectrochemical oxidation of glucose to glucaric acid by single atom Pt decorated defective TiO2. Nat. Commun. 2023, 14, 142.

76. Ayele, A. A.; Tsai, M.; Adam, D. B.; et al. Electrochemical oxidation of ethylene glycol on TiO2-supported platinum single-atom catalyst into valuable chemicals in alkaline media. Appl. Catal. A. Gen. 2022, 646, 118861.

77. Moges, E. A.; Chang, C.; Huang, W.; et al. Sustainable synthesis of dual single-atom catalyst of Pd-N4/Cu-N4 for partial oxidation of ethylene glycol. Adv. Funct. Mater. 2022, 32, 2206887.

78. Chen, W.; Luo, X.; Slater, T. J. A.; et al. General synthesis of single atom electrocatalysts via a facile condensation-carbonization process. J. Mater. Chem. A. 2020, 8, 25959-69.

79. Ayele, A. A.; Tsai, M.; Awoke, Y. A.; et al. Ni-doped TiO2 supported Pt single-atom catalyst for partial oxidation of ethylene glycol to high-value chemicals in alkaline media. Mater. Today. Chem. 2023, 34, 101797.

80. Liu, R.; Zhang, L. Q.; Yu, C.; Sun, M. T.; Liu, J. F.; Jiang, G. B. Atomic-level-designed catalytically active palladium atoms on ultrathin gold nanowires. Adv. Mater. 2017, 29, 1604571.

81. Tiwari, J. N.; Dang, N. K.; Park, H. J.; et al. Remarkably enhanced catalytic activity by the synergistic effect of palladium single atoms and palladium-cobalt phosphide nanoparticles. Nano. Energy. 2020, 78, 105166.

82. Li, M.; Duanmu, K.; Wan, C.; et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495-503.

83. Li, S.; Guan, A.; Wang, H.; et al. Hybrid palladium nanoparticles and nickel single atom catalysts for efficient electrocatalytic ethanol oxidation. J. Mater. Chem. A. 2022, 10, 6129-33.

84. Zhang, B.; Lai, W.; Sheng, T.; et al. Ordered platinum-bismuth intermetallic clusters with Pt-skin for a highly efficient electrochemical ethanol oxidation reaction. J. Mater. Chem. A. 2019, 7, 5214-20.

85. Luo, S.; Zhang, L.; Liao, Y.; et al. A tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation. Adv. Mater. 2021, 33, e2008508.

86. Zhang, G.; Cao, D.; Guo, S.; et al. Tuning the selective ethanol oxidation on tensile-trained Pt(110) surface by Ir single atoms. Small 2022, 18, e2202587.

87. Zhang, G.; Hui, C.; Yang, Z.; et al. Hydrogen-induced p-d orbital hybridization and tensile strain of PdGa single-atom alloy metallene boosts complete electrooxidation of ethanol. Appl. Catal. B. Environ. 2024, 342, 123377.

88. Lan, B.; Huang, M.; Wei, R. L.; Wang, C. N.; Wang, Q. L.; Yang, Y. Y. Ethanol electrooxidation on rhodium-lead catalysts in alkaline media: high mass activity, long-term durability, and considerable CO2 selectivity. Small 2020, 16, e2004380.

89. Zhu, C.; Lan, B.; Wei, R.; Wang, C.; Yang, Y. Potential-dependent selectivity of ethanol complete oxidation on rh electrode in alkaline media: a synergistic study of electrochemical ATR-SEIRAS and IRAS. ACS. Catal. 2019, 9, 4046-53.

90. Chang, Q.; Hong, Y.; Lee, H. J.; et al. Achieving complete electrooxidation of ethanol by single atomic Rh decoration of Pt nanocubes. Proc. Natl. Acad. Sci. USA. 2022, 119, e2112109119.

91. Pei, A.; Li, G.; Zhu, L.; et al. Nickel hydroxide-supported Ru single atoms and Pd nanoclusters for enhanced electrocatalytic hydrogen evolution and ethanol oxidation. Adv. Funct. Mater. 2022, 32, 2208587.

92. Wang, H.; Jiao, L.; Zheng, L.; et al. PdBi single-atom alloy aerogels for efficient ethanol oxidation. Adv. Funct. Mater. 2021, 31, 2103465.

93. Zhang, Z.; Liu, J.; Wang, J.; et al. Single-atom catalyst for high-performance methanol oxidation. Nat. Commun. 2021, 12, 5235.

94. Poerwoprajitno, A. R.; Gloag, L.; Watt, J.; et al. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat. Catal. 2022, 5, 231-7.

95. Chen, L.; Liang, X.; Wang, D.; et al. Platinum-ruthenium single atom alloy as a bifunctional electrocatalyst toward methanol and hydrogen oxidation reactions. ACS. Appl. Mater. Interfaces. 2022, 14, 27814-22.

96. Kong, F.; Liu, X.; Song, Y.; et al. Selectively coupling Ru single atoms to PtNi concavities for high-performance methanol oxidation via d-band center regulation. Angew. Chem. Int. Ed. 2022, 61, e202207524.

97. Zhuang, L.; Jia, Z.; Wang, Y.; et al. Nitrogen-doped carbon black supported synergistic palladium single atoms and nanoparticles for electrocatalytic oxidation of methanol. Chem. Eng. J. 2022, 438, 135585.

98. Ruan, J.; Chen, Y.; Zhao, G.; et al. Cobalt single atoms enabling efficient methanol oxidation reaction on platinum anchored on nitrogen-doped carbon. Small 2022, 18, e2107067.

99. Lv, J.; Feng, W.; Yang, S.; Liu, H.; Huang, X. Methanol dissociation and oxidation on single Fe atom supported on graphitic carbon nitride. Appl. Organom. Chem. 2019, 33, e4930.

100. Fan, X.; Chen, W.; Xie, L.; et al. Surface-enriched single-Bi-atoms tailoring of Pt nanorings for direct methanol fuel cells with ultralow-Pt-loading. Adv. Mater. 2024, 36, e2313179.

101. Wei, X.; Zhang, J.; Liu, C.; Han, X.; Deng, Y.; Hu, W. Ir single atoms doped cuboctahedral Pd for boosted methanol oxidation reaction. Part. Part. Syst. Charact. 2022, 39, 2200013.

102. Miao, J.; Ma, Y.; Wang, X.; et al. Efficiently selective C(O-)-C bond cleavage for full lignocellulose upgrading coupled with energy-saving hydrogen production by Ir single-atom electrocatalyst. Appl. Catal. B. Environ. 2023, 336, 122937.

103. Cui, T.; Ma, L.; Wang, S.; et al. Atomically Dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C-C bond cleavage in lignin models under ambient conditions. J. Am. Chem. Soc. 2021, 143, 9429-39.

104. Tong, S.; Gao, X.; Zhou, H.; Shi, Q.; Wu, Y.; Chen, W. Synergistic roles of the CoO/Co heterostructure and Pt single atoms for high-efficiency electrocatalytic hydrogenation of lignin-derived Bio-Oils. Inorg. Chem. 2023, 62, 19123-34.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/