REFERENCES
1. Zhang L, Zhao ZJ, Wang T, Gong J. Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide. Chem Soc Rev 2018;47:5423-43.
2. Li D, Li X, Gong J. Catalytic reforming of oxygenates: state of the art and future prospects. Chem Rev 2016;116:11529-653.
3. Subbaraman R, Tripkovic D, Chang KC, et al. Trends in activity for the water electrolyser reactions on 3D M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater 2012;11:550-7.
4. Zhu J, Lv L, Zaman S, et al. Advances and challenges in single-site catalysts towards electrochemical CO2 methanation. Energy Environ Sci 2023;16:4812-33.
5. Tang C, Qiao SZ. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem Soc Rev 2019;48:3166-80.
6. Zeng X, Shui J, Liu X, et al. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv Energy Mater 2018;8:1701345.
7. Liu J. Advanced electron microscopy of metal-support interactions in supported metal catalysts. ChemCatChem 2011;3:934-48.
8. Schlögl R, Abd Hamid SB. Nanocatalysis: mature science revisited or something really new? Angew Chem Int Ed 2004;43:1628-37.
9. Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 2009;48:60-103.
10. Bell AT. The impact of nanoscience on heterogeneous catalysis. Science 2003;299:1688-91.
11. Li H, Li L, Li Y. The electronic structure and geometric structure of nanoclusters as catalytic active sites. Nanotechnol Rev 2013;2:515-28.
12. Liu J, Gong H, Ye G, Fei H. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met 2022;41:1703-26.
13. Li R, Zhao J, Liu B, Wang D. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv Mater 2024;36:e2308653.
14. McCardle K. Theoretical insights into single-atom catalysts. Nat Comput Sci 2022;2:138.
15. Turner M, Golovko VB, Vaughan OPH, et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008;454:981-3.
16. Vajda S, Pellin MJ, Greeley JP, et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater 2009;8:213-6.
17. Lei Y, Mehmood F, Lee S, et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 2010;328:224-8.
18. Li J, Stephanopoulos MF, Xia Y. Introduction: heterogeneous single-atom catalysis. Chem Rev 2020;120:11699-702.
19. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 2011;3:634-41.
20. Wang S, Min XT, Qiao B, Yan N, Zhang T. Single-atom catalysts: in search of the holy grails in catalysis. Chin J Catal 2023;52:1-13.
21. Yang XF, Wang A, Qiao B, Li J, Liu J, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. ACC Chem Res 2013;46:1740-8.
22. Boronat M, Leyva-PĂ©rez A, Corma A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold. ACC Chem Res 2014;47:834-44.
23. Liu K, Zhao X, Ren G, et al. Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts. Nat Commun 2020;11:1263.
24. Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem 2018;2:65-81.
25. Lang R, Du X, Huang Y, et al. Single-atom catalysts based on the metal-oxide interaction. Chem Rev 2020;120:11986-2043.
26. Xu Y, Zheng W, Liu X, et al. Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater Horiz 2020;7:1519-27.
27. Lan K, Wang R, Wei Q, et al. Stable Ti3+ defects in oriented mesoporous titania frameworks for efficient photocatalysis. Angew Chem Int Ed 2020;132:17829-36.
28. Zheng T, Jiang K, Ta N, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 2019;3:265-78.
29. Kim MS, Lee J, Kim HS, et al. Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Adv Funct Mater 2020;30:1905410.
30. Liu L, Zhu QY, Li J, et al. Atomistic engineering of Ag/Pt nanoclusters for remarkably boosted mass electrocatalytic activity. Energy Mater 2022;2:200007.
31. Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y. Chemical synthesis of single atomic site catalysts. Chem Rev 2020;120:11900-55.
32. Chen Y, Li H, Zhao W, et al. Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity. Nat Commun 2019;10:1885.
33. Najam T, Ahmad Khan N, Ahmad Shah SS, et al. Metal-organic frameworks derived electrocatalysts for oxygen and carbon dioxide reduction reaction. Chem Rec 2022;22:e202100329.
34. Guillon O. Ceramic materials for energy conversion and storage: a perspective. Int J Ceram Eng Sci 2021;3:100-4.
35. Yang H, Wang CA, Dong Y. Energy ceramic design for robust battery cathodes and solid electrolytes. Adv Powder Mater 2024;3:100185.
36. Wang F, Dong B, Wang J, et al. Self-supported porous heterostructure WC/WO3-x ceramic electrode for hydrogen evolution reaction in acidic and alkaline media. J Adv Ceram 2022;11:1208-21.
37. Yang J, Li W, Wang D, Li Y. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv Mater 2020;32:e2003300.
38. Zeng L, Xue C. Single metal atom decorated photocatalysts: progress and challenges. Nano Res 2021;14:934-44.
39. Peng L, Shang L, Zhang T, Waterhouse GIN. Waterhouse GIN. Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc-air batteries. Adv Energy Mater 2020;10:2003018.
40. Zhuang Z, Kang Q, Wang D, Li Y. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res 2020;13:1856-66.
41. Hoang S, Guo Y, Binder AJ, et al. Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nat Commun 2020;11:1062.
42. Kunwar D, Zhou S, Delariva A, et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal 2019;9:3978-90.
43. Dvořák F, Farnesi Camellone M, Tovt A, et al. Creating single-atom Pt-ceria catalysts by surface step decoration. Nat Commun 2016;7:10801.
44. Qiao B, Liu J, Wang YG, et al. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal 2015;5:6249-54.
45. Qiao B, Liang JX, Wang A, et al. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res 2015;8:2913-24.
46. Liu J, Wang T, Liu X, et al. Reducible Co3+-O sites of Co-Ni-P-Ox on CeO2 nanorods boost acidic water oxidation via interfacial charge transfer-promoted surface reconstruction. ACS Catal 2023;13:5194-204.
47. Yan S, Gao Z, Ding J, et al. Nanocomposites based on nanoceria regulate the immune microenvironment for the treatment of polycystic ovary syndrome. J Nanobiotechnol 2023;21:412.
48. Yavo N, Yeheskel O, Wachtel E, Ehre D, Frenkel AI, Lubomirsky I. Relaxation and saturation of electrostriction in 10 mol% Gd-doped ceria ceramics. Acta Mater 2018;144:411-8.
49. Jones J, Xiong H, DeLaRiva AT, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016;353:150-4.
50. Nie L, Mei D, Xiong H, et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017;358:1419-23.
51. Beniya A, Higashi S. Towards dense single-atom catalysts for future automotive applications. Nat Catal 2019;2:590-602.
52. Farmer JA, Campbell CT. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 2010;329:933-6.
53. Corma A, Atienzar P, GarcĂa H, Chane-Ching JY. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat Mater 2004;3:394-7.
54. Prieur D, Bonani W, Popa K, et al. Size dependence of lattice parameter and electronic structure in CeO2 nanoparticles. Inorg Chem 2020;59:5760-7.
55. Paun C, Safonova OV, Szlachetko J, et al. Polyhedral CeO2 nanoparticles: size-dependent geometrical and electronic structure. J Phys Chem C 2012;116:7312-7.
56. Xu J, Harmer J, Li G, et al. Size dependent oxygen buffering capacity of ceria nanocrystals. Chem Commun 2010;46:1887-9.
57. Wang Y, Chen Z, Han P, et al. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal 2018;8:7113-9.
58. Xu J, Wang Y, Wang K, et al. Single-atom Rh on high-index CeO2 facet for highly enhanced catalytic CO oxidation. Angew Chem Int Ed 2023;62:e202302877.
59. Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing artificial photosynthesis with TiO2 heterostructures and hybrids: emerging trends in a classical yet contemporary photocatalyst. Adv Mater 2024;36:e2305285.
60. Martinez-Oviedo A, Kshetri YK, Joshi B, Lee SW. Surface modification of blue TiO2 with silane coupling agent for NOx abatement. Prog Nat Sci 2021;31:230-8.
61. Kuai L, Chen Z, Liu S, et al. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat Commun 2020;11:48.
62. Han B, Guo Y, Huang Y, et al. Strong metal-support interactions between Pt single atoms and TiO2. Angew Chem Int Ed 2020;59:11824-9.
63. Chen Y, Ji S, Sun W, et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew Chem Int Ed 2020;132:1311-7.
64. Wan J, Chen W, Jia C, et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv Mater 2018;30:1705369.
65. Yang M, Allard LF, Flytzani-Stephanopoulos M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. J Am Chem Soc 2013;135:3768-71.
66. Xu H, Liu C, Guo W, et al. Sodium alginate/Al2O3 fiber nanocomposite aerogel with thermal insulation and flame retardancy properties. Chem Eng J 2024;489:151223.
67. Hu J, Gao T, Li M, Liu X. Synthesis of an (Al3BC + Al2O3)/Al composite with high stiffness and attractive high-temperature tensile properties. Mater Res Lett 2024;12:355-62.
68. Zhao L, Liang Y, Ma J, et al. Ultra-steep-slope and high-stability of CuInP2S6/WS2 ferroelectric negative capacitor transistors by passivation effect and dual-gate modulation. Adv Funct Mater 2023;33:2306708.
69. Li H, Hu J, Zhang Y, et al. Single-transistor optoelectronic spiking neuron with optogenetics-inspired spatiotemporal dynamics. Adv Funct Mater 2024;34:2314456.
70. Wang F, Ma J, Xin S, et al. Resolving the puzzle of single-atom silver dispersion on nanosized Îł-Al2O3 surface for high catalytic performance. Nat Commun 2020;11:529.
71. Qin R, Zhou L, Liu P, et al. Alkali ions secure hydrides for catalytic hydrogenation. Nat Catal 2020;3:703-9.
72. Yang K, Liu Y, Deng J, et al. Three-dimensionally ordered mesoporous iron oxide-supported single-atom platinum: highly active catalysts for benzene combustion. Appl Catal B Environ Energy 2019;244:650-9.
73. Parastaev A, Muravev V, Huertas Osta E, et al. Boosting CO2 hydrogenation via size-dependent metal-support interactions in cobalt/ceria-based catalysts. Nat Catal 2020;3:526-33.
74. van Deelen TW, Hernández MejĂa C, de Jong KP. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat Catal 2019;2:955-70.
75. Liu SR, Luo ST, Wu XD, et al. Application of silica-alumina as hydrothermally stable supports for Pt catalysts for acid-assisted soot oxidation. Rare Met 2023;42:1614-23.
76. Vaudry F, Khodabandeh S, Davis ME. Synthesis of pure alumina mesoporous materials. Chem Mater 1996;8:1451-64.
77. Li W, Kovarik L, Mei D, et al. A general mechanism for stabilizing the small sizes of precious metal nanoparticles on oxide supports. Chem Mater 2014;26:5475-81.
78. Shang H, Chen W, Jiang Z, Zhou D, Zhang J. Atomic-dispersed platinum anchored on porous alumina sheets as an efficient catalyst for diboration of alkynes. Chem Commun 2020;56:3127-30.
79. Zhang Z, Zhu Y, Asakura H, et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat Commun 2017;8:16100.
80. Lan F, Zhang H, Zhao C, Shu Y, Guan Q, Li W. Copper clusters encapsulated in carbonaceous mesoporous silica nanospheres for the valorization of biomass-derived molecules. ACS Catal 2022;12:5711-25.
81. Zhang D, Cai H, Su Y, Sun W, Yang D, Ozin GA. Silica samurai: aristocrat of energy and environmental catalysis. Chem Catal 2022;2:1893-918.
82. Pellico J, Vass L, Carrascal-Miniño A, et al. In vivo real-time positron emission particle tracking (PEPT) and single particle PET. Nat Nanotechnol 2024;19:668-76.
83. Du J, Liu B, Zhao T, et al. Silica nanoparticles protect rice against biotic and abiotic stresses. J Nanobiotechnol 2022;20:197.
84. Rice SB, Koo JY, Disko MM, Treacy MMJ. On the imaging of Pt atoms in zeolite frameworks. Ultramicroscopy 1990;34:108-18.
85. Maschmeyer T, Rey F, Sankar G, Thomas JM. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 1995;378:159-62.
86. Duan H, Li M, Zhang G, et al. Single-site palladium (II) catalyst for oxidative heck reaction: catalytic performance and kinetic investigations. ACS Catal 2015;5:3752-9.
87. Wu W, Cui E, Zhang Y, et al. Involving single-atom silver(0) in selective dehalogenation by AgF under visible-light irradiation. ACS Catal 2019;9:6335-41.
88. Zhang H, Zeng X, Zhang Q, Zhang Z, Jin C, Yu R. Dual template-induced construction of three-dimensional porous SiO2/NC/Co-CNTs heterostructure with highly dispersed active sites for efficient oxygen evolution reaction. Tungsten 2024;6:585-95.
89. Yang M, Li S, Wang Y, et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 2014;346:1498-501.
90. De S, Babak MV, HĂĽlsey MJ, Ang WH, Yan N. Designed precursor for the controlled synthesis of highly active atomic and sub-nanometric platinum catalysts on mesoporous silica. Chem Asian J 2018;13:1053-9.
91. Zhai Y, Pierre D, Si R, et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 2010;329:1633-6.
92. Sun Q, Wang N, Xu Q, Yu J. Nanopore-supported metal nanocatalysts for efficient hydrogen generation from liquid-phase chemical hydrogen storage materials. Adv Mater 2020;32:e2001818.
93. Li X, Pereira-Hernández XI, Chen Y, et al. Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature 2022;611:284-8.
94. Mokhtar M, Basahel SN, Ali TT. Effect of synthesis methods for mesoporous zirconia on its structural and textural properties. J Mater Sci 2013;48:2705-13.
95. Jia K, Zheng L, Liu W, et al. A new and simple way to prepare monolithic solid oxide fuel cell stack by stereolithography 3D printing technology using 8 mol% yttria stabilized zirconia photocurable slurry. J Eur Ceram Soc 2022;42:4275-85.
96. Chang CH, Lin CY, Chang CH, Liu FH, Huang YT, Liao YS. Enhanced biomedical applicability of ZrO2-SiO2 ceramic composites in 3D printed bone scaffolds. Sci Rep 2022;12:6845.
97. Wang S, Li X, Wang J, et al. Enhanced electromechanical properties in MnCO3-modified Pb(Ni, Nb)O3-PbZrO3-PbTiO3 ceramics via defect and domain engineering. J Am Ceram Soc 2023;106:1970-80.
98. Pokrovski K, Jung KT, Bell AT. Investigation of CO and CO2 adsorption on tetragonal and monoclinic zirconia. Langmuir 2001;17:4297-303.
99. Wang J, Li G, Li Z, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci Adv 2017;3:e1701290.
100. Wang Y, Kattel S, Gao W, et al. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nat Commun 2019;10:1166.
101. Samson K, Ĺšliwa M, Socha RP, et al. Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catal 2014;4:3730-41.
102. Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J Catal 2007;249:185-94.
103. Guo X, Mao D, Lu G, Wang S, Wu G. Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. J Catal 2010;271:178-85.
104. Kondratenko EV, Mul G, Baltrusaitis J, Larrazábal GO, PĂ©rez-RamĂrez J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ Sci 2013;6:3112-35.
105. Du W, Sun Z, Chen K, Wang F, Chu K. Nb1-Zr dual active sites constructed on ZrO2 boost nitrite-to-ammonia electroreduction. Chem Eng J 2024;481:148733.
106. Choudhary N, Jiang S, Pham H, et al. Precisely designed cobalt single atom on ZrO2 support for chemical CO2 fixation. Appl Catal B Environ Energy 2024;344:123627.
107. Huang J, Han J, Wang R, et al. Improving electrocatalysts for oxygen evolution using NixFe3-xO4/Ni hybrid nanostructures formed by solvothermal synthesis. ACS Energy Lett 2018;3:1698-707.
108. Thackeray MM, Amine K. Li4Ti5O12 spinel anodes Nat Energy 2021;6:683.
109. Liu X, He L, Han G, Sheng J, Yu Y, Yang W. Design of rich defects carbon coated MnFe2O4/LaMnO3/LaFeO3 heterostructure nanocomposites for broadband electromagnetic wave absorption. Chem Eng J 2023;476:146199.
110. Liu X, Duan Y, Guo Y, et al. In situ construction of complex spinel ferrimagnet in multi-elemental alloy for modulating natural resonance and highly efficient electromagnetic absorption. Chem Eng J 2023;462:142200.
111. Avcı ÖN, Sementa L, Fortunelli A. Mechanisms of the oxygen evolution reaction on NiFe2O4 and CoFe2O4 inverse-spinel oxides. ACS Catal 2022;12:9058-73.
112. Rushiti A, Hättig C, Wen B, Selloni A. Structure and reactivity of pristine and reduced spinel CoFe2O4 (001)/(100) surfaces. J Phys Chem C 2021;125:9774-81.
113. Zhu H, Zhang S, Huang YX, Wu L, Sun S. Monodisperse MxFe3-xO4 (M= Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett 2013;13:2947-51.
114. Liu J, Zhu D, Ling T, Vasileff A, Qiao S. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 2017;40:264-73.
115. Sun S, Sun Y, Zhou Y, et al. Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides. Angew Chem Int Ed 2019;131:6103-8.
116. Zhou Y, Sun S, Wei C, et al. Significance of engineering the octahedral units to promote the oxygen evolution reaction of spinel oxides. Adv Mater 2019;31:e1902509.
117. Geng KQ, Yang MQ, Meng JX, et al. Engineering layered/spinel heterostructure via molybdenum doping towards highly stable Li-rich cathodes. Tungsten 2022;4:323-35.
118. Shan J, Ye C, Chen S, et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J Am Chem Soc 2021;143:5201-11.
119. Wang Y, Zhu YQ, Xie Z, et al. Efficient electrocatalytic oxidation of glycerol via promoted OH* generation over single-atom-bismuth-doped spinel Co3O4. ACS Catal 2022;12:12432-43.
120. Yin WJ, Weng B, Ge J, Sun Q, Li Z, Yan Y. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ Sci 2019;12:442-62.
121. Sun C, Alonso JA, Bian J. Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv Energy Mater 2021;11:2000459.
122. Song HJ, Yoon H, Ju B, Kim D. Highly efficient perovskite-based electrocatalysts for water oxidation in acidic environments: a mini review. Adv Energy Mater 2021;11:2002428.
123. Sutherland LJ, Benitez-rodriguez J, Vak D, et al. A high-pressure isostatic lamination technique to fabricate versatile carbon electrode-based perovskite solar cells. Commun Mater 2024;5:90.
124. Hailegnaw B, Demchyshyn S, Putz C, et al. Flexible quasi-2D perovskite solar cells with high specific power and improved stability for energy-autonomous drones. Nat Energy 2024;9:677-90.
125. Xia Y, Zhu M, Qin L, et al. Organic-inorganic hybrid quasi-2D perovskites incorporated with fluorinated additives for efficient and stable four-terminal tandem solar cells. Energy Mater 2023;3:300004.
126. Zhang D, Wang Y, Peng Y, et al. Novel high-entropy perovskite-type symmetrical electrode for efficient and durable carbon dioxide reduction reaction. Adv Powder Mater 2023;2:100129.
127. Dai J, Zhu Y, Tahini HA, et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat Commun 2020;11:5657.
128. Jung JI, Jeong HY, Kim MG, Nam G, Park J, Cho J. Fabrication of Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) catalysts with enhanced electrochemical performance by removing an inherent heterogeneous surface film layer. Adv Mater 2015;27:266-71.
129. Nishihata Y, Mizuki J, Akao T, et al. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 2002;418:164-7.
130. Tanaka H, Taniguchi M, Uenishi M, et al. Self-regenerating Rh- and Pt-based perovskite catalysts for automotive-emissions control. Angew Chem Int Ed 2006;45:5998-6002.
131. Onn TM, Monai M, Dai S, et al. Smart Pd catalyst with improved thermal stability supported on high-surface-area LaFeO3 prepared by atomic layer deposition. J Am Chem Soc 2018;140:4841-8.
132. Tian C, Zhang H, Zhu X, et al. A new trick for an old support: Stabilizing gold single atoms on LaFeO3 perovskite. Appl Catal B Environ Energy 2020;261:118178.
133. Shin H, Ko J, Park C, et al. Sacrificial template-assisted synthesis of inorganic nanosheets with high-loading single-atom catalysts: a general approach. Adv Funct Mater 2022;32:2110485.
134. Niu S, Yang J, Qi H, et al. Single-atom Pt promoted Mo2C for electrochemical hydrogen evolution reaction. J Energy Chem 2021;57:371-7.
135. Zeng X, Ye Y, Wang Y, Yu R, Moskovits M, Stucky GD. Honeycomb-like MXene/NiFePx-NC with "continuous" single-crystal enabling high activity and robust durability in electrocatalytic oxygen evolution reactions. J Adv Ceram 2023;12:553-64.
136. Zhang Z, Liang T, Jin C, et al. Synergistically coupling CoS/FeS2 heterojunction nanosheets on a MXene via a dual molten salt etching strategy for efficient oxygen evolution reaction. J Mater Chem A 2024;12:14517-30.
137. Zeng X, Jiang X, Ning Y, Gao Y, Che R. Constructing built-in electric fields with semiconductor junctions and Schottky junctions based on Mo-MXene/Mo-metal sulfides for electromagnetic response. Nanomicro Lett 2024;16:213.
138. Jin C, Peng H, Zeng X, Liu Z, Ding D. Hierarchical assembly of NiFe-PB-derived bimetallic phosphides on 3D Ti3C2 MXene ribbon networks for efficient oxygen evolution. ChemPhysMater 2024;3:118-24.
139. Yu LH, Tao X, Feng SR, et al. Recent development of three-dimension printed graphene oxide and MXene-based energy storage devices. Tungsten 2024;6:196-211.
140. Zeng X, Tan Y, Xia L, Zhang Q, Stucky GD. MXene-derived Ti3C2-Co-TiO2 nanoparticle arrays via cation exchange for highly efficient and stable electrocatalytic oxygen evolution. Chem Commun 2023;59:880-3.
141. Luo J, Gao S, Luo H, et al. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem Eng J 2021;406:126898.
142. Wu X, Han B, Zhang H, et al. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem Eng J 2020;381:122622.
143. Zhong Q, Li Y, Zhang G. Two-dimensional MXene-based and MXene-derived photocatalysts: recent developments and perspectives. Chem Eng J 2021;409:128099.
144. Zeng X, Duan D, Zhang X, et al. Doping and interface engineering in a sandwich Ti3C2Tx/MoS2-xPx heterostructure for efficient hydrogen evolution. J Mater Chem C 2022;10:4140-7.
145. Zeng X, Zhao C, Jiang X, Yu R, Che R. Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption. Small 2023;19:e2303393.
146. Zeng X, Jiang X, Ning Y, Hu F, Fan B. Construction of dual heterogeneous interface between zigzag-like Mo-MXene nanofibers and small CoNi@NC nanoparticles for electromagnetic wave absorption. J Adv Ceram 2023;12:1562-76.
147. Ramalingam V, Varadhan P, Fu HC, et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv Mater 2019;31:e1903841.
148. Zhang J, Wang E, Cui S, Yang S, Zou X, Gong Y. Single-atom Pt anchored on oxygen vacancy of monolayer Ti3C2Tx for superior hydrogen evolution. Nano Lett 2022;22:1398-405.
149. Zeng X, Zhang H, Yu R, Stucky GD, Qiu J. A phase and interface co-engineered MoPxSy@NiFePxSy@NPS-C hierarchical heterostructure for sustainable oxygen evolution reaction. J Mater Chem A 2023;11:14272-83.
150. Luo F, Yu Y, Long X, Li C, Xiong T, Yang Z. Boosting catalytic activity toward methanol oxidation reaction for platinum via heterostructure engineering. J Colloid Interface Sci 2024;656:450-6.
151. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017;355:eaad4998.
152. Zeng X, Zhang Q, Shen Z, Zhang H, Wang T, Liu Z. Doping and vacancy engineering in a sandwich-like g-C3N4/NiCo2O4 heterostructure for robust oxygen evolution. ChemNanoMat 2022;8:e202200191.
153. Jing H, Zhu P, Zheng X, Zhang Z, Wang D, Li Y. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv Powder Mater 2022;1:100013.
154. Wei J, Xiao K, Chen Y, Guo X, Huang B, Liu Z. In situ precise anchoring of Pt single atoms in spinel Mn3O4 for a highly efficient hydrogen evolution reaction. Energy Environ Sci 2022;15:4592-600.
155. Kim M, Kim S, Park J, et al. Reconstructing oxygen-deficient zirconia with ruthenium catalyst on atomic-scale interfaces toward hydrogen production. Adv Funct Mater 2023;33:2300673.
156. Navarra MA, Croce F, Scrosati B. New, high temperature superacid zirconia-doped Nafion™ composite membranes. J Mater Chem 2007;17:3210-5.
157. Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt TJ. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 2014;4:3800-21.
158. Zeng X, Zhang Q, Jin C, Huang H, Gao Y. Fe-induced electronic transfer and structural evolution of lotus pod-like CoNiFePx@P, N-C heterostructure for sustainable oxygen evolution. Energy Environ Mater 2024;7:e12628.
159. Long X, Xiong T, Bao H, et al. Tip and heterogeneous effects co-contribute to a boosted performance and stability in zinc air battery. J Colloid Interface Sci 2024;662:676-85.
160. Nguyen DC, Luyen Doan TL, Prabhakaran S, et al. Hierarchical Co and Nb dual-doped MoS2 nanosheets shelled micro-TiO2 hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR. Nano Energy 2021;82:105750.
161. Liu J, Liu X, Shi H, et al. Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting. Appl Catal B Environ Energy 2022;302:120862.
162. Zhu H, Wang Y, Jiang Z, Deng B, Xin Y, Jiang Z. Defect engineering promoted ultrafine Ir nanoparticle growth and Sr single-atom adsorption on TiO2 nanowires to achieve high-performance overall water splitting in acidic media. Adv Energy Mater 2024;14:2303987.
163. Wen N, Xia Y, Wang H, et al. Large-scale synthesis of spinel NixMn3-xO4 solid solution immobilized with iridium single atoms for efficient alkaline seawater electrolysis. Adv Sci 2022;9:e2200529.
164. Pan J, Xu YY, Yang H, Dong Z, Liu H, Xia BY. Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv Sci 2018;5:1700691.
165. Ge X, Sumboja A, Wuu D, et al. Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal 2015;5:4643-67.
166. Li X, Li C, Xie Y, Pan S, Luo F, Yang Z. Anion effect on oxygen reduction reaction activity of nitrogen doped carbon nanotube encapsulated cobalt nanoparticles. Appl Surf Sci 2024;648:158975.
167. Zhu Y, Peng W, Li Y, Zhang G, Zhang F, Fan X. Modulating the electronic structure of single-atom catalysts on 2D nanomaterials for enhanced electrocatalytic performance. Small Methods 2019;3:1800438.
168. Zhang J, Dong X, Xing W, et al. Engineering iron single atomic sites with adjacent ZrO2 nanoclusters via ligand-assisted strategy for effective oxygen reduction reaction and high-performance Zn-air batteries. Chem Eng J 2021;420:129938.
169. ul Haq M, Wu DH, Ajmal Z, et al. Derived-2D Nb4C3Tx sheets with interfacial self-assembled Fe-N-C single-atom catalyst for electrocatalysis in water splitting and durable zinc-air battery. Appl Catal B Environ Energy 2024;344:123632.
170. Xu X, Li X, Lu W, et al. Collective effect in a multicomponent ensemble combining single atoms and nanoparticles for efficient and durable oxygen reduction. Angew Chem Int Ed 2024;63:e202400765.
171. Cao S, Chen H, Hu Y, et al. MXene-based single atom catalysts for efficient CO2RR towards CO: a novel strategy for high-throughput catalyst design and screening. Chem Eng J 2023;461:141936.
172. Tan X, Sun K, Zhuang Z, et al. Stabilizing copper by a reconstruction-resistant atomic Cu-O-Si interface for electrochemical CO2 reduction. J Am Chem Soc 2023;145:8656-64.
173. Iqbal MS, Yao Z, Ruan Y, et al. Single-atom catalysts for electrochemical N2 reduction to NH3. Rare Met 2023;42:1075-97.
174. Suryanto BHR, Du HL, Wang D, Chen J, Simonov AN, Macfarlane DR. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat Catal 2019;2:290-6.
175. Zhang M, Xu W, Ma CL, Yu J, Liu YT, Ding B. Highly active and selective electroreduction of N2 by the catalysis of Ga single atoms stabilized on amorphous TiO2 nanofibers. ACS Nano 2022;16:4186-96.
176. Han Z, Tranca D, RodrĂguez-Hernández F, et al. Embedding Ru clusters and single atoms into perovskite oxide boosts nitrogen fixation and affords ultrahigh ammonia yield rate. Small 2023;19:e2208102.
177. Nguyen TP, Kim IT. Single-atom transition metal photocatalysts for hydrogen evolution reactions. Catalysts 2022;12:1304.
178. Fauth C, Lenzer A, Abdel-Mageed AM, JĂĽrgen Behm R. Temporal analysis of products (TAP) reactor study of the dynamics of CO2 interaction with a Ru/Îł-Al2O3 supported catalyst. Appl Catal B Environ Energy 2023;334:122817.
179. Lin Z, Wang Y, Peng Z, et al. Single-metal atoms and ultra-small clusters manipulating charge carrier migration in polymeric perylene diimide for efficient photocatalytic oxygen production. Adv Energy Mater 2022;12:2200716.
180. Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 2014;43:7787-812.
181. Akhundi A, Habibi-Yangjeh A, Abitorabi M, Rahim Pouran S. Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catal Rev 2019;61:595-628.
182. Xia B, Zhang Y, Shi B, Ran J, Davey K, Qiao S. Photocatalysts for hydrogen evolution coupled with production of value-added chemicals. Small Methods 2020;4:2000063.
183. Tentu RD, Basu S. Photocatalytic water splitting for hydrogen production. Curr Opin Electrochem 2017;5:56-62.
184. Chen X, Zhao J, Li G, Zhang D, Li H. Recent advances in photocatalytic renewable energy production. Energy Mater 2022;2:200001.
185. Wang F, Yang S, Han S, et al. Synthesis of Cu-TiO2/CuS pn heterojunction via in situ sulfidation for highly efficient photocatalytic NO removal. Prog Nat Sci 2022;32:561-9.
186. Kerketta U, Kim H, Denisov N, Schmuki P. Grätzel-type TiO2 anatase layers as host for pt single atoms: highly efficient and stable photocatalytic hydrogen production. Adv Energy Mater 2024;14:2302998.
187. Lee BH, Park S, Kim M, et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat Mater 2019;18:620-6.
188. Chen Y, Qi M, Li Y, et al. Activating two-dimensional Ti3C2Tx-MXene with single-atom cobalt for efficient CO2 photoreduction. Cell Rep Phys Sci 2021;2:100371.
189. Xu Q, Wang L, Sheng X, et al. Understanding the synergistic mechanism of single atom Co-modified perovskite oxide for piezo-photocatalytic CO2 reduction. Appl Catal B Environ Energy 2023;338:123058.
190. Cao Y, Guo L, Dan M, et al. Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction. Nat Commun 2021;12:1675.
191. Gao C, Low J, Long R, Kong T, Zhu J, Xiong Y. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem Rev 2020;120:12175-216.
192. Li S, Li Y, Bai H, et al. Penta-coordinated aluminum species: anchoring Au single atoms for photocatalytic CO2 reduction. Appl Catal B Environ Energy 2024;345:123703.
193. Li SQ, Liu Y, Li YL, et al. Development of Îł-Al2O3 with oxygen vacancies induced by amorphous structures for photocatalytic reduction of CO2. Chem Commun 2022;58:11649-52.
194. Zhao Z, Xiao D, Chen K, et al. Nature of five-coordinated Al in Îł-Al2O3 revealed by ultra-high-field solid-state NMR. ACS Cent Sci 2022;8:795-803.
195. Martin O, MartĂn AJ, Mondelli C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew Chem Int Ed 2016;55:6261-5.
196. Zhao H, Yu R, Ma S, et al. The role of Cu1-O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nat Catal 2022;5:818-31.
197. Wu C, Lin L, Liu J, et al. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation. Nat Commun 2020;11:5767.
198. Zhou H, Chen Z, LĂłpez AV, et al. Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol. Nat Catal 2021;4:860-71.