REFERENCES
1. Adhikari, J.; Roy, A.; Chanda, A.; et al. Effects of surface patterning and topography on the cellular functions of tissue engineered scaffolds with special reference to 3D bioprinting. Biomater. Sci. 2023, 11, 1236-69.
2. Patel, K. D.; Kim, T. H.; Mandakhbayar, N.; et al. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses. Acta. Biomater. 2020, 108, 97-110.
3. Choudhary, S.; Haberstroh, K. M.; Webster, T. J. Enhanced functions of vascular cells on nanostructured Ti for improved stent applications. Tissue. Eng. 2007, 13, 1421-30.
4. Lee, S. J.; Yoo, J. J.; Lim, G. J.; Atala, A.; Stitzel, J. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J. Biomed. Mater. Res. A. 2007, 83, 999-1008.
5. Moore, E. M.; Maestas, D. R. J.; Comeau, H. Y.; Elisseeff, J. H. The immune system and its contribution to variability in regenerative medicine. Tissue. Eng. Part. B. Rev. 2021, 27, 39-47.
6. Ma, Q. L.; Zhao, L. Z.; Liu, R. R.; et al. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials 2014, 35, 9853-67.
7. Morelli, I.; Drago, L.; George, D. A.; Gallazzi, E.; Scarponi, S.; Romanò, C. L. Masquelet technique: myth or reality? A systematic review and meta-analysis. Injury 2016, 47 Suppl 6, S68-76.
8. Wang, W.; Zuo, R.; Long, H.; et al. Advances in the Masquelet technique: myeloid-derived suppressor cells promote angiogenesis in PMMA-induced membranes. Acta. Biomater. 2020, 108, 223-36.
9. Pelissier, P.; Masquelet, A. C.; Bareille, R.; Pelissier, S. M.; Amedee, J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J. Orthop. Res. 2004, 22, 73-9.
10. Chen, Z.; Yuen, J.; Crawford, R.; Chang, J.; Wu, C.; Xiao, Y. The effect of osteoimmunomodulation on the osteogenic effects of cobalt incorporated β-tricalcium phosphate. Biomaterials 2015, 61, 126-38.
11. Anderson, J. M.; Rodriguez, A.; Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86-100.
12. Doloff, J. C.; Veiseh, O.; Vegas, A. J.; et al. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates. Nat. Mater. 2017, 16, 671-80.
13. Wynn, T. A.; Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 2012, 18, 1028-40.
14. Ward W. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J. Diabetes. Sci. Technol. 2008, 2, 768-77.
15. Guo, Y.; Mi, J.; Ye, C.; et al. A practical guide to promote informatics-driven efficient biotopographic material development. Bioact. Mater. 2022, 8, 515-28.
16. Chen, Z.; Bachhuka, A.; Wei, F.; et al. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. Nanoscale 2017, 9, 18129-52.
17. Feng, R.; Yu, F.; Xu, J.; Hu, X. Knowledge gaps in immune response and immunotherapy involving nanomaterials: databases and artificial intelligence for material design. Biomaterials 2021, 266, 120469.
18. Luo, J.; Walker, M.; Xiao, Y.; Donnelly, H.; Dalby, M. J.; Salmeron-Sanchez, M. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix - a review. Bioact. Mater. 2022, 15, 145-59.
19. Mpoyi E, Cantini M, Reynolds PM, Gadegaard N, Dalby MJ, Salmerón-Sánchez M. Protein adsorption as a key mediator in the nanotopographical control of cell behavior. ACS. Nano. 2016, 10, 6638-47.
20. Dabare, P. R. L.; Bachhuka, A.; Quek, J. Y.; Marsal, L. F.; Hayball, J.; Vasilev, K. Nano-roughness-mediated macrophage polarization for desired host immune response. Small. Sci. 2023, 3, 2300080.
21. Wang, C.; Wang, X.; Lu, R.; Cao, X.; Yuan, D.; Chen, S. Influence of surface nanotopography and wettability on early phases of peri-implant soft tissue healing: an in-vivo study in dogs. BMC. Oral. Health. 2023, 23, 651.
22. Webster, T. J.; Schadler, L. S.; Siegel, R. W.; Bizios, R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue. Eng. 2001, 7, 291-301.
23. Xie, X.; Xu, A. M.; Angle, M. R.; Tayebi, N.; Verma, P.; Melosh, N. A. Mechanical model of vertical nanowire cell penetration. Nano. Lett. 2013, 13, 6002-8.
24. Guo, Y.; Ao, Y.; Ye, C.; et al. Nanotopographic micro-nano forces finely tune the conformation of macrophage mechanosensitive membrane protein integrin β2 to manipulate inflammatory responses. Nano. Res. 2023, 5, 1-15.
25. Afzal J, Chang H, Goyal R, Levchenko A. Mechanics of microenvironment as instructive cues guiding stem cell behavior. Curr. Stem. Cell. Rep. 2016, 2, 62-72.
26. Zhu, C.; Chen, W.; Lou, J.; Rittase, W.; Li, K. Mechanosensing through immunoreceptors. Nat. Immunol. 2019, 20, 1269-78.
27. Zhang, X.; Kim, T. H.; Thauland, T. J.; et al. Unraveling the mechanobiology of immune cells. Curr. Opin. Biotechnol. 2020, 66, 236-45.
29. Mierke, C. T. Viscoelasticity, like forces, plays a role in mechanotransduction. Front. Cell. Dev. Biol. 2022, 10, 789841.
30. Kelkar, M.; Bohec, P.; Charras, G. Mechanics of the cellular actin cortex: from signalling to shape change. Curr. Opin. Cell. Biol. 2020, 66, 69-78.
31. Taylor, M. P.; Koyuncu, O. O.; Enquist, L. W. Subversion of the actin cytoskeleton during viral infection. Nat. Rev. Microbiol. 2011, 9, 427-39.
32. Schaks, M.; Giannone, G.; Rottner, K. Actin dynamics in cell migration. Essays. Biochem. 2019, 63, 483-95.
33. Ventre, M.; Causa, F.; Netti, P. A. Determinants of cell-material crosstalk at the interface: towards engineering of cell instructive materials. J. R. Soc. Interface. 2012, 9, 2017-32.
34. Li, X.; Klausen, L. H.; Zhang, W.; et al. Nanoscale surface topography reduces focal adhesions and cell stiffness by enhancing integrin endocytosis. Nano. Lett. 2021, 21, 8518-26.
35. Teo, B. K. K.; Wong, S. T.; Lim, C. K.; et al. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS. Nano. 2013, 7, 4785-98.
36. Bello D, Fouillen A, Badia A, Nanci A. Nanoporosity stimulates cell spreading and focal adhesion formation in cells with mutated paxillin. ACS. Appl. Mater. Interfaces. 2020, 12, 14924-32.
37. Dalby, M. J.; Giannaras, D.; Riehle, M. O.; Gadegaard, N.; Affrossman, S.; Curtis, A. S. Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography. Biomaterials 2004, 25, 77-83.
38. Oria, R.; Wiegand, T.; Escribano, J.; et al. Force loading explains spatial sensing of ligands by cells. Nature 2017, 552, 219-24.
39. Sun, Z.; Guo, S. S.; Fässler, R. Integrin-mediated mechanotransduction. J. Cell. Biol. 2016, 215, 445-56.
40. Cheng, Y.; Pang, S. W. Effects of nanopillars and surface coating on dynamic traction force. Microsyst. Nanoeng. 2023, 9, 6.
41. Hanson, L.; Zhao, W.; Lou, H. Y.; et al. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nat. Nanotechnol. 2015, 10, 554-62.
42. Persson, H.; Købler, C.; Mølhave, K.; et al. Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small 2013, 9, 4006-16.
43. Saux G, Bar-Hanin N, Edri A, Hadad U, Porgador A, Schvartzman M. Nanoscale mechanosensing of natural killer cells is revealed by antigen-functionalized nanowires. Adv. Mater. 2019, 31, e1805954.
44. Lüchtefeld, I.; Bartolozzi, A.; Mejía, M. J.; et al. Elasticity spectra as a tool to investigate actin cortex mechanics. J. Nanobiotechnol. 2020, 18, 147.
45. Di, X.; Gao, X.; Peng, L.; et al. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal. Transduct. Target. Ther. 2023, 8, 282.
46. Xia, K.; Chen, X.; Wang, W.; et al. Roles of mechanosensitive ion channels in immune cells. Heliyon 2024, 10, e23318.
47. Driscoll, T. P.; Bidone, T. C.; Ahn, S. J.; et al. Integrin-based mechanosensing through conformational deformation. Biophys. J. 2021, 120, 4349-59.
48. Sinha, B.; Köster, D.; Ruez, R.; et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 2011, 144, 402-13.
49. Chang, Y. C.; Wu, J. W.; Wang, C. W.; Jang, A. C. Hippo signaling-mediated mechanotransduction in cell movement and cancer metastasis. Front. Mol. Biosci. 2019, 6, 157.
50. Yamauchi, T.; Moroishi, T. Hippo pathway in mammalian adaptive immune system. Cells 2019, 8, 398.
51. Jeffreys, N.; Brockman, J. M.; Zhai, Y.; Ingber, D. E.; Mooney, D. J. Mechanical forces amplify TCR mechanotransduction in T cell activation and function. Appl. Phys. Rev. 2024, 11, 011304.
53. Wang, Y.; Zhang, Z.; Yang, Q.; et al. Immunoregulatory role of the mechanosensitive ion channel Piezo1 in inflammation and cancer. Molecules 2022, 28, 213.
54. Scheraga, R. G.; Southern, B. D.; Grove, L. M.; Olman, M. A. The role of TRPV4 in regulating innate immune cell function in lung inflammation. Front. Immunol. 2020, 11, 1211.
55. Zhang, M.; Ma, Y.; Ye, X.; Zhang, N.; Pan, L.; Wang, B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal. Transduct. Target. Ther. 2023, 8, 261.
56. Santoni, G.; Cardinali, C.; Morelli, M. B.; Santoni, M.; Nabissi, M.; Amantini, C. Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J. Neuroinflammation. 2015, 12, 21.
57. Michalick, L.; Kuebler, W. M. TRPV4-a missing link between mechanosensation and immunity. Front. Immunol. 2020, 11, 413.
58. Hellmich, U. A.; Gaudet, R. Structural biology of TRP channels. Handb. Exp. Pharmacol. 2014, 223, 963-90.
59. Méndez-Reséndiz, K. A.; Enciso-Pablo, Ó.; González-Ramírez, R.; Juárez-Contreras, R.; Rosenbaum, T.; Morales-Lázaro, S. L. Steroids and TRP channels: a close relationship. Int. J. Mol. Sci. 2020, 21, 3819.
60. Voets, T.; Talavera, K.; Owsianik, G.; Nilius, B. Sensing with TRP channels. Nat. Chem. Biol. 2005, 1, 85-92.
61. Loukin, S.; Zhou, X.; Su, Z.; Saimi, Y.; Kung, C. Wild-type and brachyolmia-causing mutant TRPV4 channels respond directly to stretch force. J. Biol. Chem. 2010, 285, 27176-81.
62. Soya, M.; Sato, M.; Sobhan, U.; et al. Plasma membrane stretch activates transient receptor potential vanilloid and ankyrin channels in Merkel cells from hamster buccal mucosa. Cell. Calcium. 2014, 55, 208-18.
63. Du, H.; Bartleson, J. M.; Butenko, S.; et al. Tuning immunity through tissue mechanotransduction. Nat. Rev. Immunol. 2023, 23, 174-88.
64. Dutta, B.; Goswami, R.; Rahaman, S. O. TRPV4 plays a role in matrix stiffness-induced macrophage polarization. Front. Immunol. 2020, 11, 570195.
65. Pairet, N.; Mang, S.; Fois, G.; et al. TRPV4 inhibition attenuates stretch-induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation. PLoS. One. 2018, 13, e0196055.
66. Goswami, R.; Merth, M.; Sharma, S.; et al. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation. Free. Radic. Biol. Med. 2017, 110, 142-50.
67. Li, M.; Fang, X. Z.; Zheng, Y. F.; et al. Transient receptor potential vanilloid 4 is a critical mediator in LPS mediated inflammation by mediating calcineurin/NFATc3 signaling. Biochem. Biophys. Res. Commun. 2019, 513, 1005-12.
68. Rayees, S.; Joshi, J. C.; Tauseef, M.; et al. PAR2-mediated cAMP generation suppresses TRPV4-dependent Ca2+ signaling in alveolar macrophages to resolve TLR4-induced inflammation. Cell. Rep. 2019, 27, 793-805.e4.
69. Atobe, M. Activation of transient receptor potential vanilloid (TRPV) 4 as a therapeutic strategy in osteoarthritis. Curr. Top. Med. Chem. 2019, 19, 2254-67.
70. Atobe, M.; Nagami, T.; Muramatsu, S.; et al. Discovery of novel transient receptor potential vanilloid 4 (TRPV4) agonists as regulators of chondrogenic differentiation: identification of quinazolin-4(3H)-ones and in vivo studies on a surgically induced rat model of osteoarthritis. J. Med. Chem. 2019, 62, 1468-83.
71. Xu, S.; Liu, B.; Yin, M.; et al. A novel TRPV4-specific agonist inhibits monocyte adhesion and atherosclerosis. Oncotarget 2016, 7, 37622-35.
72. Thoppil, R. J.; Adapala, R. K.; Cappelli, H. C.; et al. TRPV4 channel activation selectively inhibits tumor endothelial cell proliferation. Sci. Rep. 2015, 5, 14257.
73. Qin, L.; He, T.; Chen, S.; et al. Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone. Res. 2021, 9, 44.
74. Jankovsky, N.; Caulier, A.; Demagny, J.; et al. Recent advances in the pathophysiology of PIEZO1-related hereditary xerocytosis. Am. J. Hematol. 2021, 96, 1017-26.
75. Fang, X. Z.; Zhou, T.; Xu, J. Q.; et al. Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell. Biosci. 2021, 11, 13.
76. Liang, X.; Howard, J. Structural biology: piezo senses tension through curvature. Curr. Biol. 2018, 28, R357-9.
77. Geng, J.; Shi, Y.; Zhang, J.; et al. TLR4 signalling via Piezo1 engages and enhances the macrophage mediated host response during bacterial infection. Nat. Commun. 2021, 12, 3519.
78. Atcha, H.; Jairaman, A.; Holt, J. R.; et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat. Commun. 2021, 12, 3256.
79. Wu, J.; Chen, Y.; Liao, Z.; et al. Self-amplifying loop of NF-κB and periostin initiated by PIEZO1 accelerates mechano-induced senescence of nucleus pulposus cells and intervertebral disc degeneration. Mol. Ther. 2022, 30, 3241-56.
80. Solis, A. G.; Bielecki, P.; Steach, H. R.; et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 2019, 573, 69-74.
81. Baratchi, S.; Zaldivia, M. T. K.; Wallert, M.; et al. Transcatheter aortic valve implantation represents an anti-inflammatory therapy via reduction of shear stress-induced, Piezo-1-mediated monocyte activation. Circulation 2020, 142, 1092-105.
82. Aykut, B.; Chen, R.; Kim, J. I.; et al. Targeting Piezo1 unleashes innate immunity against cancer and infectious disease. Sci. Immunol. 2020, 5, eabb5168.
83. Wang, J.; Lin, F.; Wan, Z.; et al. Profiling the origin, dynamics, and function of traction force in B cell activation. Sci. Signal. 2018, 11, eaai9192.
84. Wan, Z.; Chen, X.; Chen, H.; et al. The activation of IgM- or isotype-switched IgG- and IgE-BCR exhibits distinct mechanical force sensitivity and threshold. Elife 2015, 4, e06925.
85. Kwak, K.; Sohn, H.; George, R.; et al. B cell responses to membrane-presented antigens require the function of the mechanosensitive cation channel Piezo1. Sci. Signal. 2023, 16, eabq5096.
86. Jairaman, A.; Othy, S.; Dynes, J. L.; et al. Piezo1 channels restrain regulatory T cells but are dispensable for effector CD4+ T cell responses. Sci. Adv. 2021, 7, eabg5859.
87. Abiff, M.; Alshebremi, M.; Bonner, M.; et al. Piezo1 facilitates optimal T cell activation during tumor challenge. Oncoimmunology 2023, 12, 2281179.
88. Liu, C. S. C.; Raychaudhuri, D.; Paul, B.; et al. Cutting edge: Piezo1 mechanosensors optimize human T cell activation. J. Immunol. 2018, 200, 1255-60.
89. Hope, J. M.; Dombroski, J. A.; Pereles, R. S.; et al. Fluid shear stress enhances T cell activation through Piezo1. BMC. Biol. 2022, 20, 61.
90. Campbell, I. D.; Humphries, M. J. Integrin structure, activation, and interactions. Cold. Spring. Harb. Perspect. Biol. 2011, 3, a004994.
91. Cormier, A.; Campbell, M. G.; Ito, S.; et al. Cryo-EM structure of the αvβ8 integrin reveals a mechanism for stabilizing integrin extension. Nat. Struct. Mol. Biol. 2018, 25, 698-704.
92. Bouaouina, M.; Harburger, D. S.; Calderwood, D. A. Talin and signaling through integrins. Methods. Mol. Biol. 2012, 757, 325-47.
93. Park, E. J.; Yuki, Y.; Kiyono, H.; Shimaoka, M. Structural basis of blocking integrin activation and deactivation for anti-inflammation. J. Biomed. Sci. 2015, 22, 51.
94. Friedland, J. C.; Lee, M. H.; Boettiger, D. Mechanically activated integrin switch controls alpha5beta1 function. Science 2009, 323, 642-4.
95. Gingras, A. R.; Ginsberg, M. H. Signal transduction: physical deformation of the membrane activates integrins. Curr. Biol. 2020, 30, R397-400.
96. Kechagia, J. Z.; Ivaska, J.; Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell. Biol. 2019, 20, 457-73.
97. Dembo, M.; Torney, D. C.; Saxman, K.; Hammer, D. The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc. R. Soc. Lond. B. Biol. Sci. 1988, 234, 55-83.
98. Kong, F.; García, A. J.; Mould, A. P.; Humphries, M. J.; Zhu, C. Demonstration of catch bonds between an integrin and its ligand. J. Cell. Biol. 2009, 185, 1275-84.
99. Case, L. B.; Waterman, C. M. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat. Cell. Biol. 2015, 17, 955-63.
100. Ma, H.; Wang, J.; Zhao, X.; et al. Periostin promotes colorectal tumorigenesis through integrin-FAK-Src pathway-mediated YAP/TAZ activation. Cell. Rep. 2020, 30, 793-806.e6.
101. Dai, J.; Qin, L.; Chen, Y.; et al. Matrix stiffness regulates epithelial-mesenchymal transition via cytoskeletal remodeling and MRTF-A translocation in osteosarcoma cells. J. Mech. Behav. Biomed. Mater. 2019, 90, 226-38.
102. Dwyer, S. F.; Gao, L.; Gelman, I. H. Identification of novel focal adhesion kinase substrates: role for FAK in NFκB signaling. Int. J. Biol. Sci. 2015, 11, 404-10.
103. Jain, N.; Vogel, V. Spatial confinement downsizes the inflammatory response of macrophages. Nat. Mater. 2018, 17, 1134-44.
104. Fu, Y.; Jing, Z.; Chen, T.; et al. Nanotube patterning reduces macrophage inflammatory response via nuclear mechanotransduction. J. Nanobiotechnol. 2023, 21, 229.
105. Mia, M. M.; Cibi, D. M.; Abdul, G. S. A. B.; et al. YAP/TAZ deficiency reprograms macrophage phenotype and improves infarct healing and cardiac function after myocardial infarction. PLoS. Biol. 2020, 18, e3000941.
106. Batista, F. D.; Arana, E.; Barral, P.; et al. The role of integrins and coreceptors in refining thresholds for B-cell responses. Immunol. Rev. 2007, 218, 197-213.
107. Wang, J. C.; Yim, Y. I.; Wu, X.; et al. A B-cell actomyosin arc network couples integrin co-stimulation to mechanical force-dependent immune synapse formation. Elife 2022, 11, e72805.
108. Wang, X.; Rodda, L. B.; Bannard, O.; Cyster, J. G. Integrin-mediated interactions between B cells and follicular dendritic cells influence germinal center B cell fitness. J. Immunol. 2014, 192, 4601-9.
109. Andreani, V.; Ramamoorthy, S.; Fässler, R.; Grosschedl, R. Integrin β1 regulates marginal zone B cell differentiation and PI3K signaling. J. Exp. Med. 2023, 220, e20220342.
110. Hogg, N.; Laschinger, M.; Giles, K.; McDowall, A. T-cell integrins: more than just sticking points. J. Cell. Sci. 2003, 116, 4695-705.
111. Monks, C. R.; Freiberg, B. A.; Kupfer, H.; Sciaky, N.; Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 1998, 395, 82-6.
112. Jankowska, K. I.; Williamson, E. K.; Roy, N. H.; et al. Integrins modulate T cell receptor signaling by constraining actin flow at the immunological synapse. Front. Immunol. 2018, 9, 25.
113. Dimitrov, S.; Gouttefangeas, C.; Besedovsky, L.; et al. Activated integrins identify functional antigen-specific CD8+ T cells within minutes after antigen stimulation. Proc. Natl. Acad. Sci. USA. 2018, 115, E5536-45.
114. Tabdanov, E.; Gondarenko, S.; Kumari, S.; et al. Micropatterning of TCR and LFA-1 ligands reveals complementary effects on cytoskeleton mechanics in T cells. Integr. Biol. 2015, 7, 1272-84.
115. Wang, M. S.; Hu, Y.; Sanchez, E. E.; et al. Mechanically active integrins target lytic secretion at the immune synapse to facilitate cellular cytotoxicity. Nat. Commun. 2022, 13, 3222.
116. Harris, J.; Werling, D.; Hope, J. C.; Taylor, G.; Howard, C. J. Caveolae and caveolin in immune cells: distribution and functions. Trends. Immunol. 2002, 23, 158-64.
117. Smart, E. J.; Graf, G. A.; McNiven, M. A.; et al. Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol. 1999, 19, 7289-304.
118. Parton, R. G.; del, P. M. A. Caveolae as plasma membrane sensors, protectors and organizers. Nat. Rev. Mol. Cell. Biol. 2013, 14, 98-112.
119. Nassoy, P.; Lamaze, C. Stressing caveolae new role in cell mechanics. Trends. Cell. Biol. 2012, 22, 381-9.
120. Pozo MA, Lolo FN, Echarri A. Caveolae: mechanosensing and mechanotransduction devices linking membrane trafficking to mechanoadaptation. Curr. Opin. Cell. Biol. 2021, 68, 113-23.
121. Wang, X. M.; Kim, H. P.; Nakahira, K.; Ryter, S. W.; Choi, A. M. K. The heme oxygenase-1/carbon monoxide pathway suppresses TLR4 signaling by regulating the interaction of TLR4 with caveolin-1. J. Immunol. 2009, 182, 3809-18.
122. Bucci, M.; Gratton, J. P.; Rudic, R. D.; et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat. Med. 2000, 6, 1362-7.
123. Liou, J. Y.; Deng, W. G.; Gilroy, D. W.; Shyue, S. K.; Wu, K. K. Colocalization and interaction of cyclooxygenase-2 with caveolin-1 in human fibroblasts. J. Biol. Chem. 2001, 276, 34975-82.
124. Shihata, W. A.; Michell, D. L.; Andrews, K. L.; Chin-Dusting, J. P. F. Caveolae: a role in endothelial inflammation and mechanotransduction? Front. Physiol. 2016, 7, 628.
125. Qin, L.; Zhu, N.; Ao, B. X.; et al. Caveolae and Caveolin-1 integrate reverse cholesterol transport and inflammation in atherosclerosis. Int. J. Mol. Sci. 2016, 17, 429.
126. Wang, X. M.; Kim, H. P.; Song, R.; Choi, A. M. K. Caveolin-1 confers antiinflammatory effects in murine macrophages via the MKK3/p38 MAPK pathway. Am. J. Respir. Cell. Mol. Biol. 2006, 34, 434-42.
127. Medina, F. A.; Williams, T. M.; Sotgia, F.; Tanowitz, H. B.; Lisanti, M. P. A novel role for caveolin-1 in B lymphocyte function and the development of thymus-independent immune responses. Cell. Cycle. 2006, 5, 1865-71.
128. Minguet, S.; Kläsener, K.; Schaffer, A. M.; et al. Caveolin-1-dependent nanoscale organization of the BCR regulates B cell tolerance. Nat. Immunol. 2017, 18, 1150-9.
129. Aramesh, M.; Yu, D.; Essand, M.; Persson, C. Enhanced cellular uptake through nanotopography-induced macropinocytosis. Adv. Funct. Mater. 2024, 34, 2400487.
130. Hyun, J.; Kim, S. J.; Cho, S. D.; Kim, H. W. Mechano-modulation of T cells for cancer immunotherapy. Biomaterials 2023, 297, 122101.
131. Swaminathan, V.; Gloerich, M. Decoding mechanical cues by molecular mechanotransduction. Curr. Opin. Cell. Biol. 2021, 72, 72-80.
132. Goriainov, V.; Hulsart-Billstrom, G.; Sjostrom, T.; Dunlop, D. G.; Su, B.; Oreffo, R. O. C. Harnessing nanotopography to enhance osseointegration of clinical orthopedic titanium implants-an in vitro and in vivo analysis. Front. Bioeng. Biotechnol. 2018, 6, 44.
133. Luo, J.; Zhao, S.; Gao, X.; et al. TiO2 nanotopography-driven osteoblast adhesion through coulomb’s force evolution. ACS. Appl. Mater. Interfaces. 2022, 14, 34400-14.
134. Alves-Rezende, M. C. R.; Capalbo, L. C.; De, O. L. J. P. J.; Capalbo, B. C.; Limírio, P. H. J. O.; Rosa, J. L. The role of TiO2 nanotube surface on osseointegration of titanium implants: biomechanical and histological study in rats. Microsc. Res. Technol. 2020, 83, 817-23.
135. Long, E. G.; Buluk, M.; Gallagher, M. B.; Schneider, J. M.; Brown, J. L. Human mesenchymal stem cell morphology, migration, and differentiation on micro and nano-textured titanium. Bioact. Mater. 2019, 4, 249-55.
136. Vasita, R.; Katti, D. S. Nanofibers and their applications in tissue engineering. Int. J. Nanomed. 2006, 1, 15-30.
137. Schieber, R.; Lasserre, F.; Hans, M.; et al. Direct laser interference patterning of CoCr alloy surfaces to control endothelial cell and platelet response for cardiovascular applications. Adv. Healthc. Mater. 2017, 6, 1700327.
138. Gonciar, D.; Mocan, T.; Agoston-Coldea, L. Nanoparticles targeting the molecular pathways of heart remodeling and regeneration. Pharmaceutics 2022, 14, 711.
140. Cheng, B.; Lin, M.; Huang, G.; et al. Cellular mechanosensing of the biophysical microenvironment: a review of mathematical models of biophysical regulation of cell responses. Phys. Life. Rev. 2017, 22-3, 88-119.
141. Han, S.; Cruz, S. H.; Park, S.; Shin, S. R. Nano-biomaterials and advanced fabrication techniques for engineering skeletal muscle tissue constructs in regenerative medicine. Nano. Converg. 2023, 10, 48.