REFERENCES

1. Ghori SW, Siakeng R, Rasheed M, Saba N, Jawaid M. 2 - The role of advanced polymer materials in aerospace. In: Jawaid M, Thariq M, editors. Sustainable composites for aerospace applications. Elsevier; 2018, pp. 19-34.

2. Sathishkumar T, Satheeshkumar S, Naveen J. Glass fiber-reinforced polymer composites - a review. J Reinf Plast Compos 2014;33:1258-75.

3. Mouritz A, Gellert E, Burchill P, Challis K. Review of advanced composite structures for naval ships and submarines. Compos Struct 2001;53:21-42.

4. Talreja R. Transverse cracking and stiffness reduction in composite laminates. J Compos Mater 1985;19:355-75.

5. Li J, Zhang Z, Fu J, Liang Z, Ramakrishnan KR. Mechanical properties and structural health monitoring performance of carbon nanotube-modified FRP composites: a review. Nanotechnol Rev 2021;10:1438-68.

6. Silversides I, Maslouhi A, LaPlante G. Acoustic emission monitoring of interlaminar delamination onset in carbon fibre composites. Struct Heal Monit 2013;12:126-40.

7. Safri SNAB, Sultan MTH, Jawaid M. 7 - Damage analysis of glass fiber reinforced composites. In: Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites. Elsevier; 2019. pp. 133-47.

8. Wu S, Ladani RB, Ravindran AR, et al. Aligning carbon nanofibres in glass-fibre/epoxy composites to improve interlaminar toughness and crack-detection capability. Compos Sci Technol 2017;152:46-56.

9. Senthil K, Arockiarajan A, Palaninathan R, Santhosh B, Usha KM. Defects in composite structures: its effects and prediction methods - a comprehensive review. Compos Struct 2013;106:139-49.

10. Dong H, Liu H, Nishimura A, et al. Monitoring strain response of epoxy resin during curing and cooling using an embedded strain gauge. Sensors 2020;21:172.

11. Dawood TA, Shenoi RA, Sahin M. A procedure to embed fibre Bragg grating strain sensors into GFRP sandwich structures. Compos Part A Appl Sci Manuf 2007;38:217-26.

12. Sante R. Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications. Sensors 2015;15:18666-713.

13. Ramakrishnan M, Rajan G, Semenova Y, Farrell G. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 2016;16:99.

14. Tuloup C, Harizi W, Aboura Z, Meyer Y, Khellil K, Lachat R. On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: a literature review. Compos Struct 2019;215:127-49.

15. Rocha H, Semprimoschnig C, Nunes JP. Sensors for process and structural health monitoring of aerospace composites: a review. Eng Struct 2021;237:112231.

16. Su Y, Xu L, Zhou P, et al. In situ cure monitoring and in-service impact localization of FRPs using pre-implanted nanocomposite sensors. Compos Part A Appl Sci Manuf 2022;154:106799.

17. Konka HP, Wahab MA, Lian K. On mechanical properties of composite sandwich structures with embedded piezoelectric fiber composite sensors. J Eng Mater Technol 2012;134:011010.

18. Xiao Y, Qiao W, Fukuda H, Hatta H. The effect of embedded devices on structural integrity of composite laminates. Compos Struct 2016;153:21-9.

19. Zhang F, Gong L, Wang F, et al. Embedded Pt-PVDF sensor without compromising mechanical properties of GFRP for on-line sensing. Thin-Walled Struct 2023;187:110702.

20. Wang Q, Tian Y, Duongthipthewa A, et al. An embedded non-intrusive graphene/epoxy broadband nanocomposite sensor co-cured with GFRP for in situ structural health monitoring. Compos Sci Technol 2023;236:109995.

21. Yang G, Feng X, Wang W, OuYang Q, Liu L. Effective interlaminar reinforcing and delamination monitoring of carbon fibrous composites using a novel nano-carbon woven grid. Compos Sci Technol 2021;213:108959.

22. Kravchenko OG, Pedrazzoli D, Kovtun D, Qian X, Manas-Zloczower I. Incorporation of plasma-functionalized carbon nanostructures in composite laminates for interlaminar reinforcement and delamination crack monitoring. J Phys Chem Solids 2018;112:163-70.

23. Du X, Zhou H, Sun W, et al. Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Compos Sci Technol 2017;140:123-33.

24. Zhang H, Liu Y, Bilotti E, Peijs T. In-situ monitoring of interlaminar shear damage in carbon fibre composites. Adv Compos Lett 2015;24:096369351502400.

25. Li M, Li S, Xiao J, Fu Y, Zhu W, Ke Y. An integrated nanofiller spray and nanosecond pulse electrically-assisted method for synergistically interlaminar toughening and in-situ damage monitoring of CFRP composites. Compos Part B Eng 2024;275:111355.

26. Liu H, Qu P, Yu S, Xu Y, Jia Y. Low-cost carbon black-loaded functional films for interlaminar toughening and in-situ delamination monitoring of carbon fiber/epoxy composites. J Appl Polym Sci 2022;139:52170.

27. Wan Y, Yang H, Tian Z, et al. Mode I interlaminar crack length prediction by the resistance signal of the integrated MWCNT sensor in WGF/epoxy composites during DCB test. J Mater Res Technol 2020;9:5922-33.

28. Kravchenko OG, Pedrazzoli D, Bonab VS, Manas-Zloczower I. Conductive interlaminar interfaces for structural health monitoring in composite laminates under fatigue loading. Mater Des 2018;160:1217-25.

29. Liu Y, Luo H, Xie H, et al. Trilayer PVDF nanocomposites with significantly enhanced energy density and energy efficiency using 0.55Bi0.5Na0.5TiO3-0.45(Sr0.7Bi0.2)TiO3 nanofibers. Microstructures 2023;3:2023008.

30. Yang W, Li N, Zhao S, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins. Adv Mater Technol 2018;3:1700241.

31. Rani SD, Ramachandran R, Sheet S, et al. NiMoO4 nanoparticles decorated carbon nanofiber membranes for the flexible and high performance glucose sensors. Sensors Actuat B Chem 2020;312:127886.

32. Lin L, Park S, Kim Y, et al. Wearable and stretchable conductive polymer composites for strain sensors: how to design a superior one? Nano Mater Sci 2023;5:392-403.

33. Cao T, Shi XL, Zou J, Chen ZG. Advances in conducting polymer-based thermoelectric materials and devices. Microstructures 2021;1:2021007.

34. Ding B, Wang M, Yu J, Sun G. Gas sensors based on electrospun nanofibers. Sensors 2009;9:1609-24.

35. Zheng N, Song Y, Lan M, Dong X, Zhou H, Gao J. Improved interlaminar property of carbon fiber/epoxy composites with polyurethane/RGO core-shell structure fibrous mat. Compos Commun 2023;44:101748.

36. Cheng WH, Wu PL, Huang HH. Electrospun polyvinylidene fluoride piezoelectric fiber glass/carbon hybrid self-sensing composites for structural health monitoring. Sensors 2023;23:3813.

37. Leung CM, Chen X, Wang T, et al. Enhanced electromechanical response in PVDF-BNBT composite nanofibers for flexible sensor applications. Materials 2022;15:1769.

38. Chen X, Cheng S, Wen K, et al. In-situ damage self-monitoring of fiber-reinforced composite by integrating self-powered ZnO nanowires decorated carbon fabric. Compos Part B Eng 2023;248:110368.

39. Dubois D, Esteva F, Garcia P, Godo L, De Màntaras RL, Prade H. Case-based reasoning: a fuzzy approach. In: Ralescu AL, Shanahan JG, editors. Fuzzy logic in artificial intelligence. Berlin: Springer; 1999. pp. 79-90.

40. Chen X, Cheng S, Wang S, et al. Embedding stretchable, mesh-structured piezoresistive sensor for in-situ damage detection of glass fiber-reinforced composite. Compos Sci Technol 2023;233:109926.

41. Sánchez-Romate X, González C, Jiménez-Suárez A, Prolongo SG. Novel approach for damage detection in multiscale CNT-reinforced composites via wireless Joule heating monitoring. Compos Sci Technol 2022;227:109614.

42. Kang J, Liu T, Lu Y, et al. Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites. Compos Part B Eng 2022;245:110229.

43. Rubio-González C, de Urquijo-Ventura MDP, Rodríguez-González JA. Damage progression monitoring using self-sensing capability and acoustic emission on glass fiber / epoxy composites and damage classification through principal component analysis. Compos Part B Eng 2023;254:110608.

44. Rosa IM, Sarasini F. Use of PVDF as acoustic emission sensor for in situ monitoring of mechanical behaviour of glass/epoxy laminates. Polym Test 2010;29:749-58.

45. Bae JH, Lee SW, Chang SH. Characterization of low-velocity impact-induced damages in carbon/epoxy composite laminates using a poly(vinylidene fluoride-trifluoroethylene) film sensor. Compos Part B Eng 2018;135:189-200.

46. Masmoudi S, El Mahi A, Turki S. Fatigue behaviour and structural health monitoring by acoustic emission of E-glass/epoxy laminates with piezoelectric implant. Appl Acoust 2016;108:50-8.

47. Feng T, Aliabadi MHF. Structural integrity assessment of composites plates with embedded PZT transducers for structural health monitoring. Materials 2021;14:6148.

48. Konka HP, Wahab MA, Lian K. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber-epoxy composite laminate. Smart Mater Struct 2012;21:015016.

49. Buggisch C, Gibhardt D, Felmet N, Tetzner Y, Fiedler B. Strain sensing in GFRP via fully integrated carbon nanotube epoxy film sensors. Compos Part C Open Access 2021;6:100191.

50. Reghat M, Mirabedini A, Tan AM, et al. Graphene as a piezo-resistive coating to enable strain monitoring in glass fiber composites. Compos Sci Technol 2021;211:108842.

51. Han S, Li Q, Cui Z, et al. Non-destructive testing and structural health monitoring technologies for carbon fiber reinforced polymers: a review. Nondestruct Test Eval 2024;39:725-61.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/