REFERENCES

1. Hohe J, Neubrand A, Fliegener S, et al. Performance of fiber reinforced materials under cryogenic conditions - a review. Compos Part A Appl Sci Manuf 2021;141:106226.

2. Fasana A, Ferraris A, Polato DB, Airale AG, Carello M. Composite and damping materials characterization with an application to a car door BT - advances in Italian mechanism science. In: Carbone G, Gasparetto A, eds. Advances in Italian Mechanism Science. IFToMM ITALY 2018. Mechanisms and Machine Science. Cham: Springer International Publishing; 2018, pp. 174-84.

3. Sujon MA, Islam A, Nadimpalli VK. Damping and sound absorption properties of polymer matrix composites: a review. Polym Test 2021;104:107388.

4. Chung DDL. Structural composite materials tailored for damping. J Alloys Compd 2003;355:216-23.

5. Chandra R, Singh SP, Gupta K. Damping studies in fiber-reinforced composites - a review. Compos Struct 1999;46:41-51.

6. Gibson RF. Damping characteristics of composite materials and structures. J Mater Eng Perform 1992;1:11-20.

7. Lu W, Qin F, Wang Y, et al. Engineering graphene wrinkles for large enhancement of interlaminar friction enabled damping capability. ACS Appl Mater Interfaces 2019;11:30278-89.

8. Long WJ, Wei JJ, Xing F, Khayat KH. Enhanced dynamic mechanical properties of cement paste modified with graphene oxide nanosheets and its reinforcing mechanism. Cem Concr Compos 2018;93:127-39.

9. Khan SU, Li CY, Siddiqui NA, Kim JK. Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes. Compos Sci Technol 2011;71:1486-94.

10. Ashraf T, Ranaiefar M, Khatri S, et al. Carbon nanotubes within polymer matrix can synergistically enhance mechanical energy dissipation. Nanotechnology 2018;29:115704.

11. Giovannelli A, Di Maio D, Scarpa F. Industrial-graded epoxy nanocomposites with mechanically dispersed multi-walled carbon nanotubes: static and damping properties. Materials 2017;10:1222.

12. Gardea F, Glaz B, Riddick J, Lagoudas DC, Naraghi M. Identification of energy dissipation mechanisms in CNT-reinforced nanocomposites. Nanotechnology 2016;27:105707.

13. Joy A, Varughese S, Sankaran S, Haridoss P. Role of interface on damping characteristics of multi-walled carbon nanotube reinforced epoxy nanocomposites. Mater Res Express 2019;6:1050c4.

14. Lahiri D, Das S, Choi W, Agarwal A. Unfolding the damping behavior of multilayer graphene membrane in the low-frequency regime. ACS Nano 2012;6:3992-4000.

15. Bunch JS, van der Zande AM, Verbridge SS, et al. Electromechanical resonators from graphene sheets. Science 2007;315:490-3.

16. Barton RA, Ilic B, van der Zande AM, et al. High, size-dependent quality factor in an array of graphene mechanical resonators. Nano Lett 2011;11:1232-6.

17. Xing C, Zhang M, Liu L, et al. Constructing and regulating nanochannels in two-dimensional-material-based membranes for specified separation applications. Microstructures 2023;3:2023031.

18. Min C, Liu D, Shen C, et al. Unique synergistic effects of graphene oxide and carbon nanotube hybrids on the tribological properties of polyimide nanocomposites. Tribol Int 2018;117:217-24.

19. Zhang J, Gao X, Xu Q, Ma T, Hu Y, Luo J. Atomistic insights into friction and wear mechanisms of graphene oxide. Appl Surf Sci 2021;546:149130.

20. Rafiee M, Nitzsche F, Labrosse MR. Fabrication and experimental evaluation of vibration and damping in multiscale graphene/fiberglass/epoxy composites. J Compos Mater 2019;53:2105-18.

21. Pan S, Feng J, Safaei B, Qin Z, Chu F, Hui D. A comparative experimental study on damping properties of epoxy nanocomposite beams reinforced with carbon nanotubes and graphene nanoplatelets. Nanotechnol Rev 2022;11:1658-69.

22. Gong L, Zhang F, Peng X, et al. Improving the damping properties of carbon fiber reinforced polymer composites by interfacial sliding of oriented multilayer graphene oxide. Compos Sci Technol 2022;224:109309.

23. Peter C, Kremer K. Multiscale simulation of soft matter systems - from the atomistic to the coarse-grained level and back. Soft Matter 2009;5:4357-66.

24. Du G, Tan Z, Li Z, et al. Microscopic damping mechanism of micro-porous metal films. Curr Appl Phys 2018;18:1388-92.

25. Zhai J, Song X, Xu A, Chen Y, Han Q. Dislocation damping and defect friction damping in magnesium: molecular dynamics study. Met Mater Int 2021;27:1458-68.

26. Zhang H, Zhao D, Yin G, et al. Effect of SIS block copolymers on damping properties of natural rubber/AO-80 and the performance enhancement mechanism: experimental study and molecular dynamics simulation. Colloids Surfaces A Physicochem Eng Asp 2023;672:131705.

27. He Q, Xu ZD, Xu Y, et al. Mechanical and damping properties analyses of small molecular modifiers/nitrile-butadiene rubber composite: molecular dynamics simulation. Macromol Theory Simul 2023;32:2200051.

28. Yin C, Zhao X, Zhu J, Hu H, Song M, Wu S. Experimental and molecular dynamics simulation study on the damping mechanism of C5 petroleum resin/chlorinated butyl rubber composites. J Mater Sci 2019;54:3960-74.

29. Zhu J, Zhao X, Liu L, Song M, Wu S. Quantitative relationships between intermolecular interaction and damping parameters of irganox-1035/NBR hybrids: a combination of experiments, molecular dynamics simulations, and linear regression analyses. J Appl Polymer Sci 2018;135:46202.

30. Qiao B, Zhao X, Yue D, Zhang L, Wu S. A combined experiment and molecular dynamics simulation study of hydrogen bonds and free volume in nitrile-butadiene rubber/hindered phenol damping mixtures. J Mater Chem 2012;22:12339-48.

31. Jiang Z, Wang F, Yin J, et al. Vibration damping mechanism of CuAlMn/polymer/carbon nanomaterials multi-scale composites. Compos Part B Eng 2020;199:108266.

32. Wang F, Li L, Tang H, Wang X, Hu Y. Damping of aluminum-matrix composite reinforced by carbon nanotube: multiscale modeling and characteristics. Sci China Technol Sci 2023;66:1062-74.

33. Duan K, Li L, Hu Y, Wang X. Damping characteristic of Ni-coated carbon nanotube/copper composite. Mater Des 2017;133:455-63.

34. Kim SY, Park HS. Utilizing mechanical strain to mitigate the intrinsic loss mechanisms in oscillating metal nanowires. Phys Rev Lett 2008;101:215502.

35. Song M, Yue X, Chang C, Cao F, Yu G, Wang X. Investigation of the compatibility and damping performance of graphene oxide grafted antioxidant/nitrile-butadiene rubber composite: insights from experiment and molecular simulation. Polymers 2022;14:736.

36. Hu K, Yu C, Yang Q, Chen Y, Chen G, Ma R. Multi-scale enhancement mechanisms of graphene oxide on styrene-butadiene-styrene modified asphalt: an exploration from molecular dynamics simulations. Mater Des 2021;208:109901.

37. Liu X, Song M, Wang H, Chen S, Zheng W, Wang X. Hydrogen bond networks and wrinkles in graphene oxide/nitrile butadiene rubber composites for enhancement of damping capability: molecular simulation and experimental study. Compos Sci Technol 2023;240:110083.

38. Wei X, Meng Z, Ruiz L, et al. Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation. ACS Nano 2016;10:1820-8.

39. Zhang M, Wang X, Zhou M, Zhai Z, Jiang B. The effect of self-resistance electric heating on the interfacial behavior of injection molded carbon fiber/polypropylene composites through molecular dynamics analysis. Polymer 2020;207:122915.

40. Rappe AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 1992;114:10024-35.

41. Dyer T, Thamwattana N, Jalili R. Modelling the interaction of graphene oxide using an atomistic-continuum model. RSC Adv 2015;5:77062-70.

42. Stauffer D, Dragneva N, Floriano WB, et al. An atomic charge model for graphene oxide for exploring its bioadhesive properties in explicit water. J Chem Phys 2014;141:044705.

43. Zhang M, Liu B, Luan Y, et al. Nano-level insights on the interfacial wettability of graphene oxide-coated carbon fiber/epoxy composite. J Mater Sci 2023;58:8815-32.

44. Tam LH, Jiang J, Yu Z, Orr J, Wu C. Molecular dynamics investigation on the interfacial shear creep between carbon fiber and epoxy matrix. Appl Surf Sci 2021;537:148013.

45. Li B, Chen J, Lv Y, Huang L, Zhang X. Influence of humidity on fatigue performance of CFRP: a molecular simulation. Polymers 2020;13:140.

46. Zhang M, Jiang B, Chen C, Drummer D, Zhai Z. The effect of temperature and strain rate on the interfacial behavior of glass fiber reinforced polypropylene composites: a molecular dynamics study. Polymers 2019;11:1766.

47. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 1995;117:1-19.

48. Zhang H, Zhao Y, Meng T, Shah SP. The modification effects of a nano-silica slurry on microstructure, strength, and strain development of recycled aggregate concrete applied in an enlarged structural test. Constr Build Mater 2015;95:721-35.

49. Wang G, Dai Z, Wang Y, et al. Measuring interlayer shear stress in bilayer graphene. Phys Rev Lett 2017;119:036101.

50. Kunal K, Aluru NR. Akhiezer damping in nanostructures. Phys Rev B 2011;84:245450.

51. Harrison JA, White CT, Colton RJ, Brenner DW. Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. Phys Rev B Condens Matter 1992;46:9700-8.

52. Granick S. Motions and relaxations of confined liquids. Science 1991;253:1374-9.

53. Gong L, Kinloch IA, Young RJ, Riaz I, Jalil R, Novoselov KS. Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater 2010;22:2694-7.

54. Wang ZJ, Ma TB, Hu YZ, Xu L, Wang H. Energy dissipation of atomic-scale friction based on one-dimensional Prandtl-Tomlinson model. Friction 2015;3:170-82.

55. Yuan R, Li P, Chen L, et al. Effects of grafting oxygen atoms on the tribological properties of graphene: molecular dynamics simulation and experimental analysis. Appl Surf Sci 2020;528:147045.

56. Lu W, Qin F, Zhang Q, et al. Engineering foam skeletons with multilayered graphene oxide coatings for enhanced energy dissipation. Compos Part A Appl Sci Manuf 2020;137:106035.

57. Lu W, Zhang Q, Qin F, et al. Hierarchical network structural composites for extraordinary energy dissipation inspired by the cat paw. Appl Mater Today 2021;25:101222.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/