REFERENCES

1. Zhang Y, Han A, Deng S, et al. The impact of fossil fuel combustion on children's health and the associated losses of human capital. Global Transitions 2023;5:117-24.

2. Abdallah L, El-shennawy T. Reducing carbon dioxide emissions from electricity sector using smart electric grid applications. J Eng 2013;2013:1-8.

3. Nguyen TV, Do HH, Trung TQ, et al. Stable and multicolored electrochromic device based on polyaniline-tungsten oxide hybrid thin film. J Alloys Compd 2021;882:160718.

4. Nguyen TV, Huynh KA, Le QV, Kim H, Ahn SH, Kim SY. Highly stable electrochromic cells based on amorphous tungsten oxides prepared using a solution-annealing process. Int J Energy Res 2021;45:8061-72.

5. Kim S, Kim KH, Oh C, Zhang K, Park JH. Artificial photosynthesis for high-value-added chemicals: old material, new opportunity. Carbon Energy 2022;4:21-44.

6. Jin B, Cho Y, Park C, et al. A two-photon tandem black phosphorus quantum dot-sensitized BiVO4 photoanode for solar water splitting. Energy Environ Sci 2022;15:672-9.

7. Kim KH, Choi C, Choung S, et al. Continuous oxygen vacancy gradient in TiO2 photoelectrodes by a photoelectrochemical-driven “self-purification” process. Adv Energy Mater 2022;12:2103495.

8. Lee MK, Shokouhimehr M, Kim SY, Jang HW. Two-dimensional metal-organic frameworks and covalent-organic frameworks for electrocatalysis: distinct merits by the reduced dimension. Adv Energy Mater 2022;12:2003990.

9. Lee SA, Yang JW, Lee TH, et al. Multifunctional nano-heterogeneous Ni(OH)2/NiFe catalysts on silicon photoanode toward efficient water and urea oxidation. Appl Catal B Environ 2022;317:121765.

10. Cho JH, Lee C, Hong SH, et al. Transition metal ion doping on ZIF-8 enhances the electrochemical CO2 reduction reaction. Adv Mater 2023;35:e2208224.

11. Lee MG, Yang JW, Park H, et al. Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nanomicro Lett 2022;14:48.

12. Kai C, Kong C, Zhang F, Li D, Wang Y, Oh W. In situ growth of CdS spherical nanoparticles/Ti3C2 MXene nanosheet heterojunction with enhanced photocatalytic hydrogen evolution. J Korean Ceram Soc 2022;59:302-11.

13. Xie H, Zhao Z, Liu T, et al. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022;612:673-8.

14. Odenweller A, Ueckerdt F, Nemet GF, Jensterle M, Luderer G. Probabilistic feasibility space of scaling up green hydrogen supply. Nat Energy 2022;7:854-65.

15. Van Dao D, Di Liberto G, Ko H, et al. LaFeO3 meets nitrogen-doped graphene functionalized with ultralow Pt loading in an impactful Z-scheme platform for photocatalytic hydrogen evolution. J Mater Chem A 2022;10:3330-40.

16. Nguyen TV, Le QV, Nguyen CC, et al. Synthesis of nano-coral tungsten carbide/carbon fibers as efficient catalysts for hydrogen evolution reaction. Int J Energy Res 2022;46:13089-98.

17. Li C, Baek JB. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega 2020;5:31-40.

18. Cai J, Javed R, Ye D, Zhao H, Zhang J. Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 2020;8:22467-87.

19. Wu H, Feng C, Zhang L, Zhang J, Wilkinson DP. Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem Energy Rev 2021;4:473-507.

20. Paygozar S, Sabour Rouh Aghdam A, Hassanizadeh E, Andaveh R, Barati Darband G. Recent progress in non-noble metal-based electrocatalysts for urea-assisted electrochemical hydrogen production. Int J Hydrogen Energy 2023;48:7219-59.

21. Wu L, Hofmann JP. Comparing the intrinsic HER activity of transition metal dichalcogenides: pitfalls and suggestions. ACS Energy Lett 2021;6:2619-25.

22. Muthu J, Khurshid F, Chin H, Yao Y, Hsieh Y, Hofmann M. The HER performance of 2D materials is underestimated without morphology correction. Chem Eng J 2023;465:142852.

23. Li C, Zhang H, Liu M, Lang F, Pang J, Bu X. Recent progress in metal-organic frameworks (MOFs) for electrocatalysis. Ind Chem Mater 2023;1:9-38.

24. Jin S. How to effectively utilize MOFs for electrocatalysis. ACS Energy Lett 2019;4:1443-5.

25. Van Nguyen T, Do HH, Tekalgne M, et al. WS2-WC-WO3 nano-hollow spheres as an efficient and durable catalyst for hydrogen evolution reaction. Nano Converg 2021;8:28.

26. Bolar S, Shit S, Murmu NC, Samanta P, Kuila T. Activation strategy of MoS2 as HER electrocatalyst through doping-induced lattice strain, band gap engineering, and active crystal plane design. ACS Appl Mater Interfaces 2021;13:765-80.

27. Nguyen T, Tekalgne M, Nguyen TP, Van Le Q, Ahn SH, Kim SY. Electrocatalysts based on MoS2 and WS2 for hydrogen evolution reaction: an overview. Battery Energy 2023;2:20220057.

28. van Nguyen T, Tekalgne M, Nguyen TP, et al. Control of the morphologies of molybdenum disulfide for hydrogen evolution reaction. Int J Energy Res 2022;46:11479-91.

29. Baumann AE, Burns DA, Liu B, Thoi VS. Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun Chem 2019;2:86.

30. Redfern LR, Farha OK. Mechanical properties of metal-organic frameworks. Chem Sci 2019;10:10666-79.

31. Zhu J, Hu L, Zhao P, Lee LYS, Wong KY. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev 2020;120:851-918.

32. Li X, Zhao L, Yu J, et al. Water splitting: from electrode to green energy system. Nanomicro Lett 2020;12:131.

33. Wei J, Zhou M, Long A, et al. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nanomicro Lett 2018;10:75.

34. Hu C, Zhang L, Gong J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ Sci 2019;12:2620-45.

35. Bao F, Kemppainen E, Dorbandt I, et al. Understanding the hydrogen evolution reaction kinetics of electrodeposited nickel-molybdenum in acidic, near-neutral, and alkaline conditions. ChemElectroChem 2021;8:195-208.

36. Kumar S, Kaur R, Sharma S. Recent reports on hydrogen evolution reactions and catalysis. Results Chem 2022;4:100613.

37. Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal 2014;4:3957-71.

38. Duan J, Chen S, Zhao C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat Commun 2017;8:15341.

39. Heveling J. Heterogeneous catalytic chemistry by example of industrial applications. J Chem Educ 2012;89:1530-6.

40. Hinnemann B, Moses PG, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 2005;127:5308-9.

41. Zheng Z, Yu L, Gao M, et al. Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer. Nat Commun 2020;11:3315.

42. Niu S, Li S, Du Y, Han X, Xu P. How to reliably report the overpotential of an electrocatalyst. ACS Energy Lett 2020;5:1083-7.

43. Geng X, Sun W, Wu W, et al. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat Commun 2016;7:10672.

44. Shinagawa T, Garcia-Esparza AT, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 2015;5:13801.

45. Jung HY, Chae MJ, Park JH, Song YI, Ro JC, Suh SJ. Effects of platinum group metals on MoS2 nanosheets for a high-performance hydrogen evolution reaction catalyst. ACS Appl Energy Mater 2021;4:10748-55.

46. Lin Z, Wang C, Wang Z, et al. The role of conductivity and phase structure in enhancing catalytic activity of CoSe for hydrogen evolution reaction. Electrochim Acta 2019;294:142-7.

47. Zhang X, Luo Z, Yu P, et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat Catal 2018;1:460-8.

48. Zhai W, Ma Y, Chen D, Ho JC, Dai Z, Qu Y. Recent progress on the long-term stability of hydrogen evolution reaction electrocatalysts. InfoMat 2022;4:e12357.

49. Hochfilzer D, Chorkendorff I, Kibsgaard J. Catalyst stability considerations for electrochemical energy conversion with non-noble metals: do we measure on what we synthesized? ACS Energy Lett 2023;8:1607-12.

50. Han SA, Bhatia R, Kim S. Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Convergence 2015;2:1-14.

51. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nature Nanotech 2011;6:147-50.

52. Wang Z, Mi B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ Sci Technol 2017;51:8229-44.

53. Li M, Shi J, Liu L, Yu P, Xi N, Wang Y. Experimental study and modeling of atomic-scale friction in zigzag and armchair lattice orientations of MoS2. Sci Technol Adv Mater 2016;17:189-99.

54. Li X, Zhu H. Two-dimensional MoS2: properties, preparation, and applications. J Materiom 2015;1:33-44.

55. Joseph A, Vijayan AS, Shebeeb CM, Akshay KS, John Mathew KP, Sajith V. A review on tailoring the corrosion and oxidation properties of MoS2-based coatings. J Mater Chem A 2023;11:3172-209.

56. Han B, Hu YH. MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci Eng 2016;4:285-304.

57. Zhang G, Liu H, Qu J, Li J. Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy Environ Sci 2016;9:1190-209.

58. Toh RJ, Sofer Z, Luxa J, Sedmidubský D, Pumera M. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem Commun 2017;53:3054-7.

59. Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys Rev B 2011;83:245213.

60. Shi W, Wang Z. Effect of oxygen doping on the hydrogen evolution reaction in MoS2 monolayer. J Taiwan Inst Chem Eng 2018;82:163-8.

61. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017;355:eaad4998.

62. Xu Y, Ge R, Yang J, et al. Molybdenum disulfide (MoS2)-based electrocatalysts for hydrogen evolution reaction: From mechanism to manipulation. J Energy Chem 2022;74:45-71.

63. Zhao D, Xu S, Wang H, Shen Y, Xu Q. Exfoliation of MoS2 by zero-valent transition metal intercalation. Chem Commun 2023;59:8135-8.

64. Zhu X, Su Z, Wu C, et al. Exfoliation of MoS2 nanosheets enabled by a redox-potential-matched chemical lithiation reaction. Nano Lett 2022;22:2956-63.

65. Kumar BA, Elangovan T, Raju K, Ramalingam G, Sambasivam S, Alam MM. Green solvent exfoliation of few layers 2D-MoS2 nanosheets for efficient energy harvesting and storage application. J Energy Stor 2023;65:107336.

66. Wu L, Dzade NY, Yu M, et al. Unraveling the role of lithium in enhancing the hydrogen evolution activity of MoS2: intercalation versus adsorption. ACS Energy Lett 2019;4:1733-40.

67. de-Mello GB, Smith L, Rowley-neale SJ, Gruber J, Hutton SJ, Banks CE. Surfactant-exfoliated 2D molybdenum disulphide (2D-MoS2): the role of surfactant upon the hydrogen evolution reaction. RSC Adv 2017;7:36208-13.

68. Fan X, Xu P, Zhou D, et al. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett 2015;15:5956-60.

69. Li S, Wang S, Salamone MM, et al. Edge-enriched 2D MoS2 thin films grown by chemical vapor deposition for enhanced catalytic performance. ACS Catal 2017;7:877-86.

70. Zhu J, Wang ZC, Dai H, et al. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat Commun 2019;10:1348.

71. Dong L, Guo S, Wang Y, et al. Activating MoS2 basal planes for hydrogen evolution through direct CVD morphology control. J Mater Chem A 2019;7:27603-11.

72. Jeon J, Jang SK, Jeon SM, et al. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale 2015;7:1688-95.

73. Duraisamy S, Ganguly A, Sharma PK, Benson J, Davis J, Papakonstantinou P. One-step hydrothermal synthesis of phase-engineered MoS2/MoO3 electrocatalysts for hydrogen evolution reaction. ACS Appl Nano Mater 2021;4:2642-56.

74. Muralikrishna S, Manjunath K, Samrat D, Reddy V, Ramakrishnappa T, Nagaraju DH. Hydrothermal synthesis of 2D MoS2 nanosheets for electrocatalytic hydrogen evolution reaction. RSC Adv 2015;5:89389-96.

75. Ren X, Pang L, Zhang Y, Ren X, Fan H, Liu S. One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution. J Mater Chem A 2015;3:10693-7.

76. Ganesha H, Veeresh S, Nagaraju YS, et al. 2-Dimensional layered molybdenum disulfide nanosheets and CTAB-assisted molybdenum disulfide nanoflower for high performance supercapacitor application. Nanoscale Adv 2022;4:521-31.

77. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 2013;135:10274-7.

78. Nguyen TV, Nguyen TP, Le QV, Dao DV, Ahn SH, Kim SY. Synthesis of very small molybdenum disulfide nanoflowers for hydrogen evolution reaction. Appl Surf Sci 2023;607:154979.

79. Xu J, Shao G, Tang X, et al. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nat Commun 2022;13:2193.

80. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 2012;112:933-69.

81. Yusuf VF, Malek NI, Kailasa SK. Review on metal-organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatment. ACS Omega 2022;7:44507-31.

82. Zhou HC, Long JR, Yaghi OM. Introduction to metal-organic frameworks. Chem Rev 2012;112:673-4.

83. Ahmed I, Jhung SH. Composites of metal-organic frameworks: preparation and application in adsorption. Mater Today 2014;17:136-46.

84. Skrabalak SE, Vaidhyanathan R. The chemistry of metal organic framework materials. Chem Mater 2023;35:5713-22.

85. Chueh C, Chen C, Su Y, et al. Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. J Mater Chem A 2019;7:17079-95.

86. Munawar T, Bashir A, Mukhtar F, et al. Scalable synthesis of MOFs-derived ZnO/C nanohybrid: efficient electrocatalyst for oxygen evolution reaction in alkaline medium. J Korean Ceram Soc 2023;60:918-34.

87. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal-organic framework materials as catalysts. Chem Soc Rev 2009;38:1450-9.

88. Zhou A, Guo R, Zhou J, Dou Y, Chen Y, Li J. Pd@ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance heck reaction. ACS Sustain Chem Eng 2018;6:2103-11.

89. Qin JS, Du DY, Guan W, et al. Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water. J Am Chem Soc 2015;137:7169-77.

90. Deng L, Hu F, Ma M, et al. Electronic modulation caused by interfacial Ni-O-M (M = Ru, Ir, Pd) bonding for accelerating hydrogen evolution kinetics. Angew Chem Int Ed 2021;60:22276-82.

91. Ren J, Ledwaba M, Musyoka NM, et al. Structural defects in metal-organic frameworks (MOFs): formation, detection and control towards practices of interests. Coord Chem Rev 2017;349:169-97.

92. Wang Q, Astruc D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem Rev 2020;120:1438-511.

93. Han SA, Qutaish H, Lee J, Park M, Kim JH. Metal-organic framework derived porous structures towards lithium rechargeable batteries. EcoMat 2023;5:e12283.

94. Bu F, Chen W, Aly Aboud MF, Shakir I, Gu J, Xu Y. Microwave-assisted ultrafast synthesis of adjustable bimetal phosphide/graphene heterostructures from MOFs for efficient electrochemical water splitting. J Mater Chem A 2019;7:14526-35.

95. Alagar S, Krishankant, Gaur A, Bera C, Bagchi V. Rapid synthesis of a CuZn-MOF via controlled electrodeposition: manifesting enhanced overall electrocatalytic water splitting. Sustain Energy Fuels 2023;7:3692-700.

96. Hu Z, Wang Y, Zhao D. Modulated hydrothermal chemistry of metal-organic frameworks. Acc Mater Res 2022;3:1106-14.

97. Nivetha R, Gothandapani K, Raghavan V, et al. Highly porous MIL-100(Fe) for the hydrogen evolution reaction (HER) in acidic and basic media. ACS Omega 2020;5:18941-9.

98. Wu L, Zhou X, Zeng P, Huang J, Zhang M, Qin L. Hydrothermal synthesis of Ni(II) or Co(II)-based MOF for electrocatalytic hydrogen evolution. Polyhedron 2022;225:116035.

99. Ravipati M, Durai L, Badhulika S. Single-pot solvothermal synthesis of single-crystalline nickel-metal organic framework nanosheets for direct iron fuel cell applications. ACS Appl Energy Mater 2023;6:6901-9.

100. Zhang B, Zhang J, Tan X, et al. MIL-125-NH2@TiO2 core-shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 Production. ACS Appl Mater Interfaces 2018;10:16418-23.

101. Ma B, Guan PY, Li QY, Zhang M, Zang SQ. MOF-derived flower-like MoS2@TiO2 nanohybrids with enhanced activity for hydrogen evolution. ACS Appl Mater Interfaces 2016;8:26794-800.

102. Głowniak S, Szczęśniak B, Choma J, Jaroniec M. Mechanochemistry: toward green synthesis of metal-organic frameworks. Mater Today 2021;46:109-24.

103. Huo YP, Liu S, Gao ZX, Ning BA, Wang Y. State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids. Mikrochim Acta 2021;188:168.

104. Yang M, Jiao L, Dong H, et al. Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media. Sci Bull 2021;66:257-64.

105. Wang M, Xu Y, Peng CK, et al. Site-specified two-dimensional heterojunction of Pt nanoparticles/metal-organic frameworks for enhanced hydrogen evolution. J Am Chem Soc 2021;143:16512-8.

106. Nishigaki K, Katagiri M, Matsuoka M, Horiuchi Y. A synthetic route to MoS2 catalysts supported on a metal-organic framework for electrochemical hydrogen evolution reaction utilizing chemical vapor deposition. Energy Fuels 2022;36:548-53.

107. Saifi S, Dey G, Karthikeyan J, Sinha ASK, Aijaz A. MoS2 and WS2 nanosheets decorated on metal-organic framework-derived cobalt/carbon nanostructures as electrocatalysts for hydrogen evolution. ACS Appl Nano Mater 2022;5:10696-703.

108. Chen T, Wang R, Li L, Li Z, Zang S. MOF-derived Co9S8/MoS2 embedded in tri-doped carbon hybrids for efficient electrocatalytic hydrogen evolution. J Energy Chem 2020;44:90-6.

109. Zhu D, Liu J, Zhao Y, Zheng Y, Qiao SZ. Engineering 2D metal-organic framework/MoS2 interface for enhanced alkaline hydrogen evolution. Small 2019;15:e1805511.

110. Wang C, Su Y, Zhao X, Tong S, Han X. MoS2 @HKUST-1 flower-like nanohybrids for efficient hydrogen evolution reactions. Chemistry 2018;24:1080-7.

111. Qiao Z, Wang W, Liu N, et al. Synthesis of MOF/MoS2 composite photocatalysts with enhanced photocatalytic performance for hydrogen evolution from water splitting. Int J Hydrogen Energy 2022;47:40755-67.

112. Rong J, Zhu G, Ryan Osterloh W, et al. In situ construction MoS2-Pt nanosheets on 3D MOF-derived S, N-doped carbon substrate for highly efficient alkaline hydrogen evolution reaction. Chem Eng J 2021;412:127556.

113. Gopi S, Selvamani V, Yun K. MoS2 decoration followed by P inclusion over Ni-Co bimetallic metal-organic framework-derived heterostructures for water splitting. Inorg Chem 2021;60:10772-80.

114. Xiong L, Wu C, Wang G, et al. MOF-derived CoS2@NiS-MoS2 ternary composite heterojunction electrocatalyst for efficient water splitting. ACS Appl Energy Mater 2022;5:15010-8.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/